Browse > Article
http://dx.doi.org/10.3904/kjim.2014.29.6.685

Role of modern 3D echocardiography in valvular heart disease  

Shiota, Takahiro (Department of Medicine, Heart Institute, Cedars-Sinai Medical Center and University of California)
Publication Information
The Korean journal of internal medicine / v.29, no.6, 2014 , pp. 685-702 More about this Journal
Abstract
Three-dimensional (3D) echocardiography has been conceived as one of the most promising methods for the diagnosis of valvular heart disease, and recently has become an integral clinical tool thanks to the development of high quality real-time transesophageal echocardiography (TEE). In particular, for mitral valve diseases, this new approach has proven to be the most unique, powerful, and convincing method for understanding the complicated anatomy of the mitral valve and its dynamism. The method has been useful for surgical management, including robotic mitral valve repair. Moreover, this method has become indispensable for nonsurgical mitral procedures such as edge to edge mitral repair and transcatheter closure of paravaluvular leaks. In addition, color Doppler 3D echo has been valuable to identify the location of the regurgitant orifice and the severity of the mitral regurgitation. For aortic and tricuspid valve diseases, this method may not be quite as valuable as for the mitral valve. However, the necessity of 3D echo is recognized for certain situations even for these valves, such as for evaluating the aortic annulus for transcatheter aortic valve implantation. It is now clear that this method, especially with the continued development of real-time 3D TEE technology, will enhance the diagnosis and management of patients with these valvular heart diseases.
Keywords
Echocardigraphy; Mitral valve; Aortic valve; Three-dimensional;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jung HJ, Yu GY, Seok JH, et al. Usefulness of intraoperative real-time three-dimensional transesophageal echocardiography for pre-procedural evaluation of mitral valve cleft: a case report. Korean J Anesthesiol 2014;66:75-79.   DOI   ScienceOn
2 Jain S, Malouf JF. Incremental value of 3-D transesophageal echocardiographic imaging of the mitral valve. Curr Cardiol Rep 2014;16:439.   DOI   ScienceOn
3 Faletra FF, Pedrazzini G, Pasotti E, et al. 3D TEE during catheter-based interventions. JACC Cardiovasc Imaging 2014;7:292-308.
4 Cobey FC, Swaminathan M, Phillips-Bute B, et al. Quantitative assessment of mitral valve coaptation using three-dimensional transesophageal echocardiography. Ann Thorac Surg 2014;97:1998-2004.   DOI   ScienceOn
5 Berkowitz E, Kronzon I. Isolated accessory mitral valve: identification and anatomic description using 3D transesophageal echocardiography. Eur Heart J Cardiovasc Imaging 2014;15:596.   DOI   ScienceOn
6 Sordi M, Brochet E, Messika-Zeitoun D. Mitral paravalvular leak detected by three-dimensional transoesophageal echocardiography. Arch Cardiovasc Dis 2013;106:627-628.   DOI   ScienceOn
7 Ozkan M, Gursoy OM, Astarcioglu MA, et al. Real-time three-dimensional transesophageal echocardiography in the assessment of mechanical prosthetic mitral valve ring thrombosis. Am J Cardiol 2013;112:977-983.   DOI   ScienceOn
8 Min SY, Song JM, Kim YJ, et al. Discrepancy between mitral valve areas measured by two-dimensional planimetry and three-dimensional transoesophageal echocardiography in patients with mitral stenosis. Heart 2013;99:253-258.   DOI   ScienceOn
9 Looi JL, Lee AP, Wan S, et al. Diagnosis of cleft mitral valve using real-time 3-dimensional transesophageal echocardiography. Int J Cardiol 2013;168:1629-1630.   DOI   ScienceOn
10 Shiota T, Sinclair B, Ishii M, et al. Three-dimensional reconstruction of color Doppler f low convergence regions and regurgitant jets: an in vitro quantitative study. J Am Coll Cardiol 1996;27:1511-1518.   DOI   ScienceOn
11 Shiota T, Jones M, Yamada I, et al. Effective regurgitant orifice area by the color Doppler flow convergence method for evaluating the severity of chronic aortic regurgitation: an animal study. Circulation 1996;93:594-602.   DOI
12 Li XK, Irvine T, Wanitkun S, et al. Direct computation of multiple 3D f low convergence isovelocity surfaces from digital 3D reconstruction of colour Doppler data of the f low convergence region: an in vitro study with differently shaped orif ices. Eur J Echocardiogr 2000;1:244-251.   DOI
13 Little SH, Igo SR, Pirat B, et al. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 2007;99:1440-1447.   DOI   ScienceOn
14 Matsumura Y, Saracino G, Sugioka K, et al. Determination of regurgitant orifice area with the use of a new three-dimensional f low convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 2008;21:1251-1256.   DOI   ScienceOn
15 Hopmeyer J, He S, Thorvig KM, et al. Estimation of mitral regurgitation with a hemielliptic curve-fitting algorithm: in vitro experiments with native mitral valves. J Am Soc Echocardiogr 1998;11:322-331.   DOI   ScienceOn
16 Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:912-921.   DOI   ScienceOn
17 Yosefy C, Hung J, Chua S, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 2009;104:978-983.   DOI   ScienceOn
18 Zeng X, Levine RA, Hua L, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ Cardiovasc Imaging 2011;4:506-513.   DOI
19 Hyodo E, Iwata S, Tugcu A, et al. Direct measurement of multiple vena contracta areas for assessing the severity of mitral regurgitation using 3D TEE. JACC Cardiovasc Imaging 2012;5:669-676.   DOI   ScienceOn
20 Soliman OI, Anwar AM, Metawei AK, McGhie JS, Geleijnse ML, Ten Cate FJ. New scores for the assessment of mitral stenosis using real-time three-dimensional echocardiography. Curr Cardiovasc Imaging Rep 2011;4:370-377.   DOI   ScienceOn
21 de Agustin JA, Mejia H, Viliani D, et al. Proximal flow convergence method by three-dimensional color Doppler echocardiography for mitral valve area assessment in rheumatic mitral stenosis. J Am Soc Echocardiogr 2014;27:838-845.   DOI   ScienceOn
22 Applebaum RM, Kasliwal RR, Kanojia A, et al. Utility of three-dimensional echocardiography during balloon mitral valvuloplasty. J Am Coll Cardiol 1998;32:1405-1409.   DOI   ScienceOn
23 Zamorano J, Perez de Isla L, Sugeng L, et al. Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J 2004;25:2086-2091.   DOI   ScienceOn
24 Messika-Zeitoun D, Brochet E, Holmin C, et al. Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J 2007;28:72-79.
25 de Agustin JA, Nanda NC, Gill EA, de Isla LP, Zamorano JL. The use of three-dimensional echocardiography for the evaluation of and treatment of mitral stenosis. Cardiol Clin 2007;25:311-318.   DOI   ScienceOn
26 Shashanka C, Rajasekhar D, Vanajakshamma V, Kumar ML. Three-dimensional echocardiographic assessment before and after percutaneous transvenous mitral commissurotomy in patients with rheumatic mitral stenosis. J Heart Valve Dis 2013;22:543-549.
27 Anwar AM, Attia WM, Nosir YF, et al. Validation of a new score for the assessment of mitral stenosis using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2010;23:13-22.   DOI   ScienceOn
28 Eng MH, Salcedo EE, Quaife RA, Carroll JD. Implementation of real time three-dimensional transesophageal echocardiography in percutaneous mitral balloon valvuloplasty and structural heart disease interventions. Echocardiography 2009;26:958-966.   DOI   ScienceOn
29 Goland S, Trento A, Iida K, et al. Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart 2007;93:801-807.   DOI
30 Fang L, Hsiung MC, Miller AP, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography 2005;22:775-781.   DOI   ScienceOn
31 Poh KK, Levine RA, Solis J, et al. Assessing aortic valve area in aortic stenosis by continuity equation: a novel approach using real-time three-dimensional echocardiography. Eur Heart J 2008;29:2526-2535.   DOI   ScienceOn
32 Gripari P, Ewe SH, Fusini L, et al. Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart 2012;98:1229-1236.   DOI   ScienceOn
33 Jilaihawi H, Doctor N, Kashif M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 2013;61:908-916.   DOI   ScienceOn
34 Perez de Isla L, Zamorano J, Fernandez-Golfin C, et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: a novel approach for severity assessment. Int J Cardiol 2013;166:640-645.   DOI   ScienceOn
35 Shibayama K, Watanabe H, Sasaki S, et al. Impact of regurgitant orifice height for mechanism of aortic regurgitation. JACC Cardiovasc Imaging 2013;6:1347-1349.   DOI   ScienceOn
36 Ewe SH, Delgado V, van der Geest R, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantif ication of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol 2013;112:560-566.   DOI   ScienceOn
37 Furukawa A, Abe Y, Tanaka C, et al. Comparison of two-dimensional and real-time three-dimensional transesophageal echocardiography in the assessment of aortic valve area. J Cardiol 2012;59:337-343.   DOI   ScienceOn
38 Dumaswala B, Bicer EI, Dumaswala K, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of the involvement of cardiac valves and chambers in carcinoid disease. Echocardiography 2012;29:E72-E77.   DOI   ScienceOn
39 Bhattacharyya S, Burke M, Caplin ME, Davar J. Utility of 3D transoesophageal echocardiography for the assessment of tricuspid and pulmonary valves in carcinoid heart disease. Eur J Echocardiogr 2011;12:E4.   DOI   ScienceOn
40 Bhattacharyya S, Toumpanakis C, Burke M, Taylor AM, Caplin ME, Davar J. Features of carcinoid heart disease identified by 2- and 3-dimensional echocardiography and cardiac MRI. Circ Cardiovasc Imaging 2010;3:103-111.   DOI   ScienceOn
41 Fazlinezhad A, Moravvej Z, Azari A, Bigdelu L. Carcinoid heart disease and the utility of 3D trans-thoracic and trans-esophageal echocardiography: two clinical cases. J Saudi Heart Assoc 2014;26:51-55.   DOI   ScienceOn
42 Addetia K, Maffessanti F, Mediratta A, et al. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr 2014 Aug 14 [Epub]. http://dx.doi.org/10.1016/j.echo.2014.07.004.
43 Klein AL, Jellis CL. 3D imaging of device leads: "taking the lead with 3D". JACC Cardiovasc Imaging 2014;7:348-350.   DOI   ScienceOn
44 Mediratta A, Addetia K, Yamat M, et al. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging 2014;7:337-347.
45 Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 2006;114(1 Suppl):I492-I498.   DOI
46 Park YH, Song JM, Lee EY, Kim YJ, Kang DH, Song JK. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol 2008;124:160-165.   DOI   ScienceOn
47 Macnab A, Jenkins NP, Ewington I, et al. A method for the morphological analysis of the regurgitant mitral valve using three dimensional echocardiography. Heart 2004;90:771-776.   DOI   ScienceOn
48 Hozumi T, Yoshikawa J, Yoshida K, Akasaka T, Takagi T, Yamamuro A. Assessment of flail mitral leaflets by dynamic three-dimensional echocardiographic imaging. Am J Cardiol 1997;79:223-225.   DOI   ScienceOn
49 Chauvel C, Bogino E, Clerc P, et al. Usefulness of three-dimensional echocardiography for the evaluation of mitral valve prolapse: an intraoperative study. J Heart Valve Dis 2000;9:341-349.
50 Macnab A, Jenkins NP, Bridgewater BJ, et al. Three-dimensional echocardiography is superior to multiplane transoesophageal echo in the assessment of regurgitant mitral valve morphology. Eur J Echocardiogr 2004;5:212-222.   DOI   ScienceOn
51 Delabays A, Jeanrenaud X, Chassot PG, Von Segesser LK, Kappenberger L. Localization and quantification of mitral valve prolapse using three-dimensional echocardiography. Eur J Echocardiogr 2004;5:422-429.   DOI   ScienceOn
52 Sugeng L, Coon P, Weinert L, et al. Use of real-time 3-dimensional transthoracic echocardiography in the evaluation of mitral valve disease. J Am Soc Echocardiogr 2006;19:413-421.   DOI   ScienceOn
53 Ryan LP, Salgo IS, Gorman RC, Gorman JH 3rd. The emerging role of three-dimensional echocardiography in mitral valve repair. Semin Thorac Cardiovasc Surg 2006;18:126-134.   DOI   ScienceOn
54 Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol 2006;48:2524-2530.   DOI   ScienceOn
55 Agricola E, Oppizzi M, Pisani M, Maisano F, Margonato A. Accuracy of real-time 3D echocardiography in the evaluation of functional anatomy of mitral regurgitation. Int J Cardiol 2008;127:342-349.   DOI   ScienceOn
56 Hirata K, Pulerwitz T, Sciacca R, et al. Clinical utility of new real time three-dimensional transthoracic echocardiography in assessment of mitral valve prolapse. Echocardiography 2008;25:482-488.   DOI   ScienceOn
57 Sugeng L, Shernan SK, Salgo IS, et al. Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol 2008;52:446-449.   DOI   ScienceOn
58 Wei J, Hsiung MC, Tsai SK, et al. The routine use of live three-dimensional transesophageal echocardiography in mitral valve surgery: clinical experience. Eur J Echocardiogr 2010;11:14-18.   DOI   ScienceOn
59 Gutierrez-Chico JL, Zamorano Gomez JL, Rodrigo-Lopez JL, et al. Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse: is transesophageal echocardiography still mandatory? Am Heart J 2008;155:694-698.   DOI   ScienceOn
60 Zakkar M, Patni R, Punjabi PP. Mitral valve regurgitation and 3D echocardiography. Future Cardiol 2010;6:231-242.   DOI   ScienceOn
61 Tauras JM, Zhang Z, Taub CC. Incremental benefit of 3D transesophageal echocardiography: a case of a mass overlying a prosthetic mitral valve. Echocardiography 2011;28:E106-E107.   DOI   ScienceOn
62 Siddiqi N, Seto A, Patel PM. Transcatheter closure of a mechanical perivalvular leak using real-time three-dimensional transesophageal echocardiography guidance. Catheter Cardiovasc Interv 2011;78:333-335.   DOI   ScienceOn
63 La Canna G, Arendar I, Maisano F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol 2011;107:1365-1374.   DOI   ScienceOn
64 Fattouch K, Murana G, Castrovinci S, et al. Mitral valve annuloplasty and papillary muscle relocation oriented by 3-dimensional transesophageal echocardiography for severe functional mitral regurgitation. J Thorac Cardiovasc Surg 2012;143(4 Suppl):S38-S42.   DOI   ScienceOn
65 Faletra FF, Pedrazzini G, Pasotti E, Moccetti T. Side-byside comparison of fluoroscopy, 2D and 3D TEE during percutaneous edge-to-edge mitral valve repair. JACC Cardiovasc Imaging 2012;5:656-661.   DOI   ScienceOn
66 Thompson KA, Shiota T, Tolstrup K, Gurudevan SV, Siegel RJ. Utility of three-dimensional transesophageal echocardiography in the diagnosis of valvular perforations. Am J Cardiol 2011;107:100-102.   DOI   ScienceOn
67 Hien MD, Rauch H, Lichtenberg A, et al. Real-time three-dimensional transesophageal echocardiography: improvements in intraoperative mitral valve imaging. Anesth Analg 2013;116:287-295.   DOI   ScienceOn
68 Martin A, White J, Pemberton J. Severe mitral regurgitation secondary to dehiscence of a mitral annuloplasty ring shown on 3D transoesophageal echocardiography. Heart Lung Circ 2012;21:194-195.   DOI   ScienceOn
69 Izumo M, Shiota M, Kar S, et al. Comparison of real- time three-dimensional transesophageal echocardiography to two-dimensional transesophageal echocardiography for quantification of mitral valve prolapse in patients with severe mitral regurgitation. Am J Cardiol 2013;111:588-594.   DOI   ScienceOn
70 Hoffmann R, Kaestner W, Altiok E. Closure of a paravalvular leak with real-time three-dimensional transesophageal echocardiography for accurate sizing and guiding. J Invasive Cardiol 2013;25:E210-E211.
71 Havins J, Lick S, Boor P, Arora H, Ahmad M. Real time three-dimensional transesophageal echocardiography in partial posteromedial papillary muscle rupture. Echocardiography 2013;30:E179-E181.   DOI   ScienceOn
72 Shroff H, Benenstein R, Freedberg R, Mehl S, Saric M. Mitral valve Libman-Sacks endocarditis visualized by real time three-dimensional transesophageal echocardiography. Echocardiography 2012;29:E100-E101.   DOI   ScienceOn
73 Lee AP, Fang F, Jin CN, et al. Quantification of mitral valve morphology with three-dimensional echocardiography: can measurement lead to better management? Circ J 2014;78:1029-1037.   DOI   ScienceOn
74 Maslow A, Mahmood F, Poppas A, Singh A. Three-dimensional echocardiographic assessment of the repaired mitral valve. J Cardiothorac Vasc Anesth 2014;28:11-17.   DOI   ScienceOn
75 Kutty S, Colen TM, Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. J Am Soc Echocardiogr 2014;27:142-154.   DOI   ScienceOn
76 Kocabas A, Ekici F, Cetin I, Aktas D. Three-dimensional echocardiographic evaluation of a patient with double-orifice mitral valve, bicuspid aortic valve, and coarctation of aorta. Echocardiography 2014;31:E33-E34.   DOI   ScienceOn
77 Sugeng L, Spencer KT, Mor-Avi V, et al. Dynamic three-dimensional color f low Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography 2003;20:265-273.   DOI   ScienceOn
78 De Simone R, Glombitza G, Vahl CF, Albers J, Meinzer HP, Hagl S. Three-dimensional color Doppler: a clinical study in patients with mitral regurgitation. J Am Coll Cardiol 1999;33:1646-1654.   DOI   ScienceOn
79 Li X, Shiota T, Delabays A, et al. Flow convergence flow rates from 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: an in vitro quantitative flow study. J Am Soc Echocardiogr 1999;12:1035- 1044.   DOI   ScienceOn
80 Sitges M, Jones M, Shiota T, et al. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 2003;16:38-45.   DOI   ScienceOn
81 Sugeng L, Lang RM. Current status of three-dimensional color flow Doppler. Cardiol Clin 2007;25:297-303.   DOI   ScienceOn
82 Yosefy C, Levine RA, Solis J, Vaturi M, Handschumacher MD, Hung J. Proximal f low convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr 2007;20:389-396.   DOI   ScienceOn
83 Matsumura Y, Fukuda S, Tran H, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 2008;155:231-238.   DOI   ScienceOn
84 Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 2011;107:452-458.   DOI   ScienceOn
85 Chikwe J, Adams DH, Su KN, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? Eur J Cardiothorac Surg 2012;41:518-524.   DOI   ScienceOn
86 Wunderlich NC, Siegel RJ. Peri-interventional echo assessment for the MitraClip procedure. Eur Heart J Cardiovasc Imaging 2013;14:935-949.   DOI   ScienceOn
87 Maragiannis D, Little SH. Quantif ication of mitral valve regurgitation: new solutions provided by 3D echocardiography. Curr Cardiol Rep 2013;15:384.   DOI   ScienceOn
88 Swaans MJ, Van den Branden BJ, Van der Heyden JA, et al. Three-dimensional transoesophageal echocardiography in a patient undergoing percutaneous mitral valve repair using the edge-to-edge clip technique. Eur J Echocardiogr 2009;10:982-983.   DOI   ScienceOn
89 Altiok E, Paetsch I, Jahnke C, et al. Percutaneous edgeto- edge mitral valve repair: assessment of immediate post-procedural treatment effect using color 3-dimensional transesophageal echocardiography and cardiac magnetic resonance imaging. J Am Coll Cardiol 2011;58:e21.   DOI   ScienceOn
90 Schueler R, Momcilovic D, Weber M, et al. Acute changes of mitral valve geometry during interventional edgeto- edge repair with the MitraClip system are associated with midterm outcomes in patients with functional valve disease: preliminary results from a prospective single-center study. Circ Cardiovasc Interv 2014;7:390-399.   DOI   ScienceOn
91 Saitoh T, Izumo M, Furugen A, et al. Echocardiographic evaluation of iatrogenic atrial septal defect after catheter- based mitral valve clip insertion. Am J Cardiol 2012;109:1787-1791.   DOI   ScienceOn
92 Anwar AM, Nosir YF, Alasnag M, Chamsi-Pasha H. Real time three-dimensional transesophageal echocardiography: a novel approach for the assessment of prosthetic heart valves. Echocardiography 2014;31:188-196.   DOI   ScienceOn
93 Biner S, Kar S, Siegel RJ, Raf ique A, Shiota T. Value of color Doppler three-dimensional transesophageal echocardiography in the percutaneous closure of mitral prosthesis paravalvular leak. Am J Cardiol 2010;105:984-989.   DOI   ScienceOn
94 Johri AM, Yared K, Durst R, et al. Three-dimensional echocardiography-guided repair of severe paravalvular regurgitation in a bioprosthetic and mechanical mitral valve. Eur J Echocardiogr 2009;10:572-575.   DOI   ScienceOn
95 Daimon M, Shiota T, Gillinov AM, et al. Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study in an ovine model. Circulation 2005;111:2183- 2189.   DOI   ScienceOn
96 Gillinov AM, Cosgrove DM 3rd, Shiota T, et al. Cosgrove- Edwards Annuloplasty System: midterm results. Ann Thorac Surg 2000;69:717-721.   DOI   ScienceOn
97 Kwan J, Shiota T, Agler DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 2003;107:1135-1140.   DOI   ScienceOn
98 Ahmad RM, Gillinov AM, McCarthy PM, et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction. Ann Thorac Surg 2004;78:2063-2068.   DOI   ScienceOn
99 Watanabe N, Ogasawara Y, Yamaura Y, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol 2005;45:763-769.   DOI   ScienceOn
100 Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Akasaka T, Yoshida K. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J Heart Valve Dis 2005;14:447-452.
101 Anwar AM, Soliman O, van den Bosch AE, et al. Assessment of pulmonary valve and right ventricular outflow tract with real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 2007;23:167-175.   DOI
102 Daimon M, Saracino G, Gillinov AM, et al. Local dysfunction and asymmetrical deformation of mitral annular geometry in ischemic mitral regurgitation: a novel computerized 3D echocardiographic analysis. Echocardiography 2008;25:414-423.   DOI   ScienceOn
103 Lin QS, Fang F, Yu CM, et al. Dynamic assessment of the changing geometry of the mitral apparatus in 3D could stratify abnormalities in functional mitral regurgitation and potentially guide therapy. Int J Cardiol 2014 Aug 8 [Epub]. http://dx.doi.org/10.1016/j.ijcard. 2014.08.001.
104 Perez de Isla L, Benitez DR, Serra V, Cordeiro P, Zamorano JL. Usefulness of real time 3D echocardiography in assessment of rheumatic mitral stenosis. Arch Cardiol Mex 2005;75:210-221.
105 Hamilton-Craig C, Boga T, Platts D, Walters DL, Burstow DJ, Scalia G. The role of 3D transesophageal echocardiography during percutaneous closure of paravalvular mitral regurgitation. JACC Cardiovasc Imaging 2009;2:771-773.   DOI   ScienceOn
106 Chen Q, Nosir YF, Vletter WB, Kint PP, Salustri A, Roelandt JR. Accurate assessment of mitral valve area in patients with mitral stenosis by three-dimensional echocardiography. J Am Soc Echocardiogr 1997;10:133-140.   DOI   ScienceOn
107 Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H. Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 2000;36:1355-1361.   DOI   ScienceOn
108 Perez de Isla L, Casanova C, Almeria C, et al. Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin's method versus 3D-echo. Eur J Echocardiogr 2007;8:470-473.   DOI   ScienceOn
109 Valocik G, Kamp O, Mannaerts HF, Visser CA. New quantitative three-dimensional echocardiographic indices of mitral valve stenosis: new 3D indices of mitral stenosis. Int J Cardiovasc Imaging 2007;23:707-716.   DOI
110 Chu JW, Levine RA, Chua S, et al. Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 2008;21:1006-1009.   DOI   ScienceOn
111 Schlosshan D, Aggarwal G, Mathur G, Allan R, Cranney G. Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc Imaging 2011;4:580-588.   DOI   ScienceOn
112 Weyman AE. Assessment of mitral stenosis: role of real-time 3D TEE. JACC Cardiovasc Imaging 2011;4:589-591.   DOI   ScienceOn
113 Dreyfus J, Brochet E, Lepage L, et al. Real-time 3D transoesophageal measurement of the mitral valve area in patients with mitral stenosis. Eur J Echocardiogr 2011;12:750-755.   DOI   ScienceOn
114 Yamaura Y, Yoshikawa J, Yoshida K, Hozumi T, Akasaka T, Okada Y. Three-dimensional analysis of conf iguration and dynamics in patients with an annuloplasty ring by multiplane transesophageal echocardiography: comparison between f lexible and rigid annuloplasty rings. J Heart Valve Dis 1995;4:618-622.
115 Kwan J, Jeon MJ, Kim DH, Park KS, Lee WH. Does the mitral annulus shrink or enlarge during systole? A real- time 3D echocardiography study. J Korean Med Sci 2009;24:203-208.
116 Moustafa SE, Mookadam F, Alharthi M, Kansal M, Bansal RC, Chandrasekaran K. Mitral annular geometry in normal and myxomatous mitral valves: three-dimensional transesophageal echocardiographic quantification. J Heart Valve Dis 2012;21:299-310.
117 Mahmood F, Warraich HJ, Gorman JH 3rd, et al. Changes in mitral annular geometry after aortic valve replacement: a three-dimensional transesophageal echocardiographic study. J Heart Valve Dis 2012;21:696-701.
118 Yamaura Y, Yoshida K, Hozumi T, Akasaka T, Okada Y, Yoshikawa J. Three-dimensional echocardiographic evaluation of configuration and dynamics of the mitral annulus in patients fitted with an annuloplasty ring. J Heart Valve Dis 1997;6:43-47.
119 Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging 2007;23:701-705.   DOI   ScienceOn
120 Kwan J, Kim GC, Jeon MJ, et al. 3D geometry of a normal tricuspid annulus during systole: a comparison study with the mitral annulus using real-time 3D echocardiography. Eur J Echocardiogr 2007;8:375-383.   DOI   ScienceOn
121 Kwan J, Gillinov MA, Thomas JD, Shiota T. Geometric predictor of significant mitral regurgitation in patients with severe ischemic cardiomyopathy, undergoing Dor procedure: a real-time 3D echocardiographic study. Eur J Echocardiogr 2007;8:195-203.   DOI   ScienceOn
122 Vengala S, Nanda NC, Dod HS, et al. Images in geriatric cardiology: usefulness of live three-dimensional transthoracic echocardiography in aortic valve stenosis evaluation. Am J Geriatr Cardiol 2004;13:279-284.   DOI   ScienceOn
123 Garcia E, Almeria C, Unzue L, Jimenez P, Cuadrado A, Macaya C. Transfemoral implantation of Edwards Sapien XT aortic valve without previous valvuloplasty: role of 2D/3D transeophageal echocardiography. Catheter Cardiovasc Interv 2014 Jan 31 [Epub]. http://dx.doi.org/10.1002/ccd.25417.
124 Saitoh T, Shiota M, Izumo M, et al. Comparison of left ventricular outf low geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol 2012;109:1626-1631.   DOI   ScienceOn
125 Altiok E, Koos R, Schroder J, et al. Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart 2011;97:1578-1584.   DOI   ScienceOn
126 Wu VC, Kaku K, Takeuchi M, et al. Aortic root geometry in patients with aortic stenosis assessed by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 2014;27:32-41.   DOI   ScienceOn
127 Bharucha T, Ho SY, Vettukattil JJ. Multiplanar review analysis of three-dimensional echocardiographic datasets gives new insights into the morphology of subaortic stenosis. Eur J Echocardiogr 2008;9:614-620.   DOI   ScienceOn
128 Mihara H, Shibayama K, Harada K, Berdejo J, Itabashi Y, Shiota T. LV outflow tract area in discrete subaortic stenosis and hypertrophic obstructive cardiomyopathy: a real-time 3-dimensional transesophageal echocardiography study. JACC Cardiovasc Imaging 2014;7:425-428.   DOI   ScienceOn
129 Patel V, Nanda NC, Rajdev S, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of Ebstein's anomaly. Echocardiography 2005;22:847-854.   DOI   ScienceOn
130 van Noord PT, Scohy TV, McGhie J, Bogers AJ. Three-dimensional transesophageal echocardiography in Ebstein's anomaly. Interact Cardiovasc Thorac Surg 2010;10:836-837.   DOI
131 Negoi RI, Ispas AT, Ghiorghiu I, et al. Complex Ebstein's malformation: def ining preoperative cardiac anatomy and function. J Card Surg 2013;28:70-81.   DOI   ScienceOn
132 Fukuda S, Gillinov AM, McCarthy PM, Matsumura Y, Thomas JD, Shiota T. Echocardiographic follow-up of tricuspid annuloplasty with a new three-dimensional ring in patients with functional tricuspid regurgitation. J Am Soc Echocardiogr 2007;20:1236-1242.   DOI   ScienceOn
133 Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg 2006;5:683-687.   DOI
134 Mahmood F, Kim H, Chaudary B, et al. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J Cardiothorac Vasc Anesth 2013;27:639-646.   DOI   ScienceOn
135 Daimon M, Gillinov AM, Liddicoat JR, et al. Dynamic change in mitral annular area and motion during percutaneous mitral annuloplasty for ischemic mitral regurgitation: preliminary animal study with real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 2007;20:381-388.   DOI   ScienceOn
136 Naqvi TZ, Rafie R, Ghalichi M. Real-time 3D TEE for the diagnosis of right-sided endocarditis in patients with prosthetic devices. JACC Cardiovasc Imaging 2010;3:325-327.   DOI   ScienceOn
137 Tanis W, Teske AJ, van Herwerden LA, et al. The additional value of three-dimensional transesophageal echocardiography in complex aortic prosthetic heart valve endocarditis. Echocardiography 2014 Apr 12 [Epub]. http://dx.doi.org/10.1111/echo.12602.
138 Berdejo J, Shibayama K, Harada K, et al. Evaluation of vegetation size and its relationship with embolism in infective endocarditis: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging 2014;7:149-154.   DOI   ScienceOn