Browse > Article
http://dx.doi.org/10.3904/kjim.2012.27.2.128

Current Epidemiology and Growing Resistance of Gram-Negative Pathogens  

Livermore, David M. (Norwich Medical School, University of East Anglia)
Publication Information
The Korean journal of internal medicine / v.27, no.2, 2012 , pp. 128-142 More about this Journal
Abstract
In the 1980s, Gram-negative pathogens appeared to have been beaten by oxyimino-cephalosporins, carbapenems, and fluoroquinolones. Yet these pathogens have fought back, aided by their membrane organization, which promotes the exclusion and efflux of antibiotics, and by a remarkable propensity to recruit, transfer, and modify the expression of resistance genes, including those for extended-spectrum ${\beta}$-lactamases (ESBLs), carbapenemases, aminoglycoside-blocking 16S rRNA methylases, and even a quinolone-modifying variant of an aminoglycoside-modifying enzyme. Gram-negative isolates -both fermenters and non-fermenters- susceptible only to colistin and, more variably, fosfomycin and tigecycline, are encountered with increasing frequency, including in Korea. Some ESBLs and carbapenemases have become associated with strains that have great epidemic potential, spreading across countries and continents; examples include Escherichia coli sequence type (ST)131 with CTX-M-15 ESBL and Klebsiella pneumoniae ST258 with KPC carbapenemases. Both of these high-risk lineages have reached Korea. In other cases, notably New Delhi Metallo carbapenemase, the relevant gene is carried by promiscuous plasmids that readily transfer among strains and species. Unless antibiotic stewardship is reinforced, microbiological diagnosis accelerated, and antibiotic development reinvigorated, there is a real prospect that the antibiotic revolution of the 20th century will crumble.
Keywords
Enterobacteriaceae; Pseudomonas; Acinetobacter; ${\beta}$-lactamase; Carbapenemase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Rhee JY, Park YK, Shin JY, et al. KPC-producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother 2010;54:2278-2279.   DOI   ScienceOn
2 Kim MN, Yong D, An D, et al. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol 2012;50:1433-1436.   DOI   ScienceOn
3 Roh KH, Lee CK, Sohn JW, Song W, Yong D, Lee K. Isolation of a Klebsiella pneumoniae isolate of sequence type 258 producing KPC-2 carbapenemase in Korea. Korean J Lab Med 2011;31:298-301.   DOI
4 European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net) [Internet]. Solna, Sweden: European Centre for Disease Prevention and Control, c2012 [cited 2012 Mar 20]. Available from: http://www.ecdc.europa.eu/en/activities/ surveillance/ears-net.
5 Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 2012;34:124-137.   DOI   ScienceOn
6 Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34:634-640.   DOI   ScienceOn
7 Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011;19:419-426.   DOI   ScienceOn
8 Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H; Study Group. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 2005;249:241-245.   DOI   ScienceOn
9 Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 1999;176:411-419.
10 Cornaglia G, Giamarellou H, Rossolini GM. Metallo-$\beta$- lactamases: a last frontier for $\beta$-lactams? Lancet Infect Dis 2011;11:381-393.   DOI   ScienceOn
11 Crespo MP, Woodford N, Sinclair A, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 2004;42:5094-5101.   DOI   ScienceOn
12 Silva FM, Carmo MS, Silbert S, Gales AC. SPM-1-producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist 2011;17:215-220.   DOI   ScienceOn
13 Pitt TL, Livermore DM, Pitcher D, Vatopoulos AC, Legakis NJ. Multiresistant serotype O 12 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol Infect 1989;103:565-576.   DOI
14 Lee K, Park AJ, Kim MY, et al. Metallo-beta-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J 2009;50:335-339.   DOI   ScienceOn
15 Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-$\beta$-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother 2011;66:2791-2796.   DOI   ScienceOn
16 Gurung M, Moon DC, Tamang MD, et al. Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis 2010;68:468-470.   DOI   ScienceOn
17 Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006;12:826-836.   DOI   ScienceOn
18 Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006;258:72-77.   DOI   ScienceOn
19 Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob Agents Chemother 2008;52:1252-1256.   DOI   ScienceOn
20 Park YK, Choi JY, Jung SI, et al. Two distinct clones of carbapenem- resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis 2009;64:389-395.   DOI   ScienceOn
21 Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis 2008;21:367-371.   DOI   ScienceOn
22 Lee K, Yum JH, Yong D, et al. Novel acquired metallo-betalactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005;49:4485-4491.   DOI   ScienceOn
23 Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006;2:e7.   DOI
24 Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008;190:8053-8064.   DOI   ScienceOn
25 Beceiro A, Llobet E, Aranda J, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011;55:3370-3379.   DOI   ScienceOn
26 Henry R, Vithanage N, Harrison P, et al. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transpor t of lipoproteins, phospholipids, and poly- $\beta$-1,6- N-acetylglucosamine. Antimicrob Agents Chemother 2012;56:59-69.   DOI   ScienceOn
27 Hornsey M, Ellington MJ, Doumith M, et al. AdeABCmediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 2010;65:1589-1593.   DOI   ScienceOn
28 Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J Antimicrob Chemother 2010;65:2141-2148.   DOI   ScienceOn
29 Lee SG, Lee H, Jeong SH, et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 2010;65:669-675.   DOI   ScienceOn
30 Chisholm SA, Alexander S, Desouza-Thomas L, et al. Emergence of a Neisseria gonorrhoeae clone showing decreased susceptibility to cefixime in England and Wales. J Antimicrob Chemother 2011;66:2509-2512.   DOI   ScienceOn
31 Bignell C, Fitzgerald M; Guideline Development Group; British Association for Sexual Health and HIV UK. UK national guideline for the management of gonorrhoea in adults, 2011. Int J STD AIDS 2011;22:541-547.   DOI   ScienceOn
32 Ohnishi M, Golparian D, Shimuta K, et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011;55:3538-3545.   DOI   ScienceOn
33 Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012;56:1273-1280.   DOI   ScienceOn
34 Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 2011;66:1963-1971.   DOI   ScienceOn
35 Livermore DM. Doripenem: antimicrobial profile and clinical potential. Diagn Microbiol Infect Dis 2009;63:455-458.   DOI   ScienceOn
36 Livermore DM, Mushtaq S, Ge Y, Warner M. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int J Antimicrob Agents 2009;34:402-406.   DOI   ScienceOn
37 Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother 2011;55:2390-2394.   DOI   ScienceOn
38 Livermore DM, Mushtaq S, Warner M, et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase: producing Enterobacteriaceae. Antimicrob Agents Chemother 2011;55:390-394.   DOI   ScienceOn
39 Armstrong ES, Miller GH. Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol 2010;13:565-573.   DOI   ScienceOn
40 Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2010;65:1972-1974.   DOI   ScienceOn
41 Baker SJ, Tomsho JW, Benkovic SJ. Boron-containing inhibitors of synthetases. Chem Soc Rev 2011;40:4279-4285.   DOI   ScienceOn
42 Xiao XY, Hunt DK, Zhou J, et al. Fluorocyclines. 1.7-fluoro- 9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 2012;55:597-605.   DOI   ScienceOn
43 Masterton RG. The new treatment paradigm and the role of carbapenems. Int J Antimicrob Agents 2009;33:105-110.
44 Kumar A. Optimizing antimicrobial therapy in sepsis and septic shock. Crit Care Clin 2009;25:733-751.   DOI   ScienceOn
45 Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospitalacquired pneumonia. Chest 2005;128:2778-2787.   DOI   ScienceOn
46 Gaibani P, Rossini G, Ambretti S, et al. Blood culture systems: rapid detection-how and why? Int J Antimicrob Agents 2009;34 Suppl 4:S13-S15.
47 Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 2009;9:126.   DOI   ScienceOn
48 Vince A, Lepej SZ, Barsic B, et al. LightCycler SeptiFast assay as a tool for the rapid diagnosis of sepsis in patients during antimicrobial therapy. J Med Microbiol 2008;57(Pt 10):1306-1307.   DOI
49 Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1-12.   DOI   ScienceOn
50 Holmes NE, Howden BP. The rise of antimicrobial resistance: a clear and present danger. Expert Rev Anti Infect Ther 2011;9:645-648.   DOI   ScienceOn
51 Livermore DM; British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 2011;66:1941-1944.   DOI   ScienceOn
52 Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007;6:29-40.   DOI   ScienceOn
53 Finch R; BSAC Working Party on the Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Regulatory opportunities to encourage technology solutions to antibacterial drug resistance. J Antimicrob Chemother 2011;66:1945-1947.   DOI   ScienceOn
54 White AR; BSAC Working Party on the Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control. J Antimicrob Chemother 2011;66:1948-1953.   DOI   ScienceOn
55 Projan SJ. Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 2003;6:427-430.   DOI   ScienceOn
56 Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 2010;54:4851-4863.   DOI   ScienceOn
57 Kollef MH. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis 2008;47 Suppl 1:S3-S13.   DOI
58 Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009;69:1555-1623.   DOI   ScienceOn
59 Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martinez JL. The intrinsic resistome of Pseudomonas aeruginosa to $\beta$-lactams. Virulence 2011;2:144-146.   DOI
60 Pages JM, Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gramnegative bacteria. Biochim Biophys Acta 2009;1794:826-833.   DOI   ScienceOn
61 Wilson J, Elgohari S, Livermore DM, et al. Trends among pathogens reported as causing bacteraemia in England, 2004-2008. Clin Microbiol Infect 2011;17:451-458.   DOI   ScienceOn
62 Livermore DM. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol 1987;6:439-445.   DOI   ScienceOn
63 Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 2001;45:2628-2630.   DOI   ScienceOn
64 Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 2002;162:185-190.   DOI   ScienceOn
65 Schwaber MJ, Graham CS, Sands BE, Gold HS, Carmeli Y. Treatment with a broad-spectrum cephalosporin versus piperacillin-tazobactam and the risk for isolation of broadspectrum cephalosporin-resistant Enterobacter species. Antimicrob Agents Chemother 2003;47:1882-1886.   DOI   ScienceOn
66 Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22:161-182.   DOI   ScienceOn
67 Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infect Dis Clin North Am 1997;11:875-887.   DOI   ScienceOn
68 Hawkey PM. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect 2008;14 Suppl 1:159-165.   DOI
69 Paterson DL, Bonomo R A. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657-686.   DOI   ScienceOn
70 Bush K. Extended-spectrum beta-lactamases in North America, 1987-2006. Clin Microbiol Infect 2008;14 Suppl 1:134-143.   DOI
71 Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165-174.
72 Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008;14 Suppl 1:33-41.   DOI
73 Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 2011;17:83-97.   DOI   ScienceOn
74 Livermore DM. Fourteen years in resistance. Int J Antimicrob Agents 2012;39:283-294.   DOI   ScienceOn
75 Rooney PJ, O'Leary MC, Loughrey AC, et al. Nursing homes as a reservoir of extended-spectrum beta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2009;64:635-641.   DOI   ScienceOn
76 Rodriguez-Bano J, Picon E, Gijon P, et al. Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol 2010;48:1726-1731.   DOI   ScienceOn
77 Pitout JD, Campbell L, Church DL, Gregson DB, Laupland KB. Molecular characteristics of travel-related extendedspectrum- beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 2009;53:2539-2543.   DOI   ScienceOn
78 Hoban DJ, Nicolle LE, Hawser S, Bouchillon S, Badal R. Antimicrobial susceptibility of global inpatient urinary tract isolates of Escherichia coli: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program: 2009-2010. Diagn Microbiol Infect Dis 2011;70:507-511.   DOI   ScienceOn
79 Chaudhuri BN, Rodrigues C, Balaji V, et al. Incidence of ESBL producers amongst Gram-negative bacilli isolated from intra-abdominal infections across India (based on SMART study, 2007 data). J Assoc Physicians India 2011;59:287-292.
80 Hsueh PR, Badal RE, Hawser SP, et al. Epidemiology and antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intraabdominal infections in the Asia-Pacific region: 2008 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). Int J Antimicrob Agents 2010;36:408-414.   DOI   ScienceOn
81 Tangden T, Cars O, Melhus A, Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010;54:3564-3568.   DOI   ScienceOn
82 Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011;11:355- 362.   DOI   ScienceOn
83 Ho PL, Yip KS, Chow KH, Lo JY, Que TL, Yuen KY. Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study in 2006 to 2008. Diagn Microbiol Infect Dis 2010;66:87-93.   DOI   ScienceOn
84 Velasco C, Rodriguez-Bano J, Garcia L, et al. Eradication of an extensive outbreak in a neonatal unit caused by two sequential Klebsiella pneumoniae clones harbouring related plasmids encoding an extended-spectrum beta-lactamase. J Hosp Infect 2009;73:157-163.   DOI   ScienceOn
85 Chandel DS, Johnson JA, Chaudhry R, et al. Extendedspectrum beta-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings. J Med Microbiol 2011;60(Pt 4):500-507.   DOI
86 Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. Characterization of plasmids encoding extended-spectrum $\beta$-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 2012;67:878-885.   DOI   ScienceOn
87 Partridge SR, Zong Z, Iredell JR. Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011;55:4971-4978.   DOI   ScienceOn
88 Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b- ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;66:1-14.   DOI   ScienceOn
89 Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4- ST131 clone. Antimicrob Agents Chemother 2009;53:4472-4482.   DOI   ScienceOn
90 Dhanji H, Doumith M, Rooney PJ, et al. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J Antimicrob Chemother 2011;66:297-303.   DOI   ScienceOn
91 Pai H. The characteristics of extended-spectrum betalactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998;39:514-519.   DOI
92 Jeong SH, Bae IK, Lee JH, et al. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol 2004;42:2902-2906.   DOI   ScienceOn
93 Jeong SH, Bae IK, Kwon SB, et al. Dissemination of transferable CTX-M-type extended-spectrum beta-lactamaseproducing Escherichia coli in Korea. J Appl Microbiol 2005;98:921-927.   DOI   ScienceOn
94 Kang CI, Wi YM, Lee MY, et al. Epidemiology and risk factors of community onset infections caused by extendedspectrum $\beta$-lactamase-producing Escherichia coli strains. J Clin Microbiol 2012;50:312-317.   DOI   ScienceOn
95 Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTXM-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect 2011;63:39-47.   DOI   ScienceOn
96 Lee MY, Choi HJ, Choi JY, et al. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J Infect 2010;60:146-153.   DOI   ScienceOn
97 Park SH, Choi SM, Lee DG, et al. Emergence of extendedspectrum $\beta$-lactamase-producing escherichia coli as a cause of community-onset bacteremia in South Korea: risk factors and clinical outcomes. Microb Drug Resist 2011;17:537-544.   DOI   ScienceOn
98 Lee DS, Lee CB, Lee SJ. Prevalence and risk factors for extended spectrum beta-lactamase-producing uropathogens in patients with urinary tract infection. Korean J Urol 2010;51:492-497.   DOI   ScienceOn
99 Kim ME, Ha US, Cho YH. Prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in female outpatients in South Korea: a multicentre study in 2006. Int J Antimicrob Agents 2008;31 Suppl 1:S15-S18.   DOI
100 Lee SJ, Lee DS, Choe HS, et al. Antimicrobial resistance in community-acquired urinary tract infections: results from the Korean Antimicrobial Resistance Monitoring System. J Infect Chemother 2011;17:440-446.   DOI   ScienceOn
101 Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006;34(5 Suppl 1):S20-S28.   DOI
102 Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 2006;58:665-668.   DOI   ScienceOn
103 Boyd DA, Tyler S, Christianson S, et al. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 2004;48:3758-3764.   DOI   ScienceOn
104 Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES. Detection of methyltransferases conferring highlevel resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 2008;52:1843-1845.   DOI   ScienceOn
105 Yang J, Ye L, Wang W, Luo Y, Zhang Y, Han L. Diverse prevalence of 16S rRNA methylase genes armA and rmtB amongst clinical multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolates. Int J Antimicrob Agents 2011;38:348-351.   DOI   ScienceOn
106 Yu F, Wang L, Pan J, et al. Prevalence of 16S rRNA methylase genes in Klebsiella pneumoniae isolates from a Chinese teaching hospital: coexistence of rmtB and armA genes in the same isolate. Diagn Microbiol Infect Dis 2009;64:57-63.   DOI   ScienceOn
107 Livermore DM, Mushtaq S, Warner M, et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 2011;66:48-53.   DOI   ScienceOn
108 Kang HY, Kim J, Seol SY, Lee YC, Lee JC, Cho DT. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extended-spectrum beta-lactamase, and/or plasmid-mediated AmpC beta-lactamase. J Microbiol 2009;47:68-75.   DOI   ScienceOn
109 Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. Coproduction of qnrB and armA from extended-spectrum betalactamase- producing Klebsiella pneumoniae. Korean J Lab Med 2007;27:428-436.   DOI   ScienceOn
110 Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem- resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 2009;63:659-667.   DOI   ScienceOn
111 Elliott E, Brink AJ, van Greune J, et al. In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum betalactamase. Clin Infect Dis 2006;42:e95-e98.   DOI   ScienceOn
112 Garcia-Fernandez A, Miriagou V, Papagiannitsis CC, et al. An ertapenem-resistant extended-spectrum-beta-lactamaseproducing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother 2010;54:4178-4184.   DOI   ScienceOn
113 Suh B, Bae IK, Kim J, Jeong SH, Yong D, Lee K. Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother 2010;54:5057-5061.   DOI   ScienceOn
114 Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9:228-236.   DOI   ScienceOn
115 Giakkoupi P, Papagiannitsis CC, Miriagou V, et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother 2011;66:1510-1513.   DOI   ScienceOn
116 Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011;35:736-755.   DOI   ScienceOn
117 Kontopoulou K, Protonotariou E, Vasilakos K, et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 beta-lactamase resistant to colistin. J Hosp Infect 2010;76:70-73.   DOI   ScienceOn
118 Toth A, Damjanova I, Puskas E, et al. Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur J Clin Microbiol Infect Dis 2010;29:765-769.   DOI   ScienceOn
119 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991;35:147-151.   DOI   ScienceOn
120 Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-betalactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999;43:1584-1590.
121 Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece: a review of the current evidence. Euro Surveill 2008;13:pii=2008.
122 Garcia-Fernandez A, Villa L, Moodley A, et al. Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother 2011;66:1987-1991.   DOI   ScienceOn
123 Lascols C, Hackel M, Marshall SH, et al. Increasing prevalence and dissemination of NDM-1 metallo-$\beta$-lactamase in India: data from the SMART study (2009). J Antimicrob Chemother 2011;66:1992-1997.   DOI   ScienceOn
124 Deshpande P, Shetty A, Kapadia F, Hedge A, Soman R, Rodrigues C. New Delhi metallo 1: have carbapenems met their doom? Clin Infect Dis 2010;51:1222.
125 Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10:597-602.   DOI   ScienceOn
126 Carrer A, Poirel L, Yilmaz M, et al. Spread of OX A-48- encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 2010;54:1369-1373.   DOI   ScienceOn
127 Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemina tion of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect 2011;17:E24-E26.   DOI   ScienceOn
128 Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:559-562.   DOI   ScienceOn
129 Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA- 181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob Agents Chemother 2011;55:1274-1278.   DOI   ScienceOn
130 Lee HK, Park YJ, Kim JY, et al. Prevalence of decreased susceptibility to carbapenems among Serratia marcescens, Enterobacter cloacae, and Citrobacter freundii and investigation of carbapenemases. Diagn Microbiol Infect Dis 2005;52:331-336.   DOI   ScienceOn