Browse > Article
http://dx.doi.org/10.4134/CKMS.c190388

COMMON FIXED POINT FOR GENERALIZED MULTIVALUED MAPPINGS VIA SIMULATION FUNCTION IN METRIC SPACES  

Antal, Swati (Department of Mathematics H. N. B. Garhwal University, BGR Campus)
Gairola, U.C. (Department of Mathematics H. N. B. Garhwal University, BGR Campus)
Publication Information
Communications of the Korean Mathematical Society / v.35, no.4, 2020 , pp. 1107-1121 More about this Journal
Abstract
The purpose of this paper is to introduce the notion of generalized multivalued Ƶ-contraction and generalized multivalued Suzuki type Ƶ-contraction for pair of mappings and establish common fixed point theorems for such mappings in complete metric spaces. Results obtained in this paper extend and generalize some well known fixed point results of the literature. We deduce some corollaries from our main result and provide examples in support of our results.
Keywords
Complete metric space; multivalued mapping; generalized ${\mathcal{Z}}$-contraction for pair of mappings; generalized Suzuki type ${\mathcal{Z}}$-contraction for pair of mappings; simulation function; common fixed point;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. S. S. Alharbi, H. H. Alsulami, and E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Spaces 2017 (2017), Art. ID 2068163, 7 pp. https://doi.org/10.1155/2017/2068163
2 B. Alqahtani, A. Fulga, and E. Karapinar, Fixed point results on ${\Delta}$-symmetric quasi- metric space via simulation function with an application to Ulam stability. Math. 6 (2018), Article No. 208. https://doi.org/10.3390/math6100208
3 O. Alqahtani and E. Karapinar, A bilateral contraction via simulation function, Filomat 33 (2019), no. 15, 4837-4843. https://doi.org/10.2298/FIL1915837A   DOI
4 E. Ameer, M. Arshad, D. Shin, and S. Yun, Common fixed point theorems of generalized multivalued $({\psi}, {\phi})$-contractions in complete metric spaces with application. Math. 7 (2019), Article No. 194. https://doi.org/10.3390/math7020194
5 H. Argoubi, B. Samet, and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1082-1094. https://doi.org/10.22436/jnsa.008.06.18   DOI
6 H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl. 159 (2012), no. 14, 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012   DOI
7 H. Aydi, E. Karapinar, and V. Rakoccevic, Nonunique fixed point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat. 12 (2019), no. 3, 265-288.
8 S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181   DOI
9 M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), no. 2, 772-782. https://doi.org/10.1016/j.jmaa. 2006.03.016   DOI
10 L. Ciric, Multi-valued nonlinear contraction mappings, Nonlinear Anal. 71 (2009), no. 7-8, 2716-2723. https://doi.org/10.1016/j.na.2009.01.116   DOI
11 H. Covitz and S. B. Nadler, Jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. https://doi.org/10.1007/BF02771543   DOI
12 D. Klim and D.Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334 (2007), no. 1, 132-139. https://doi.org/10.1016/j.jmaa.2006.12.012   DOI
13 E. Karapinar, Fixed points results via simulation functions, Filomat 30 (2016), no. 8, 2343-2350. https://doi.org/10.2298/FIL1608343K   DOI
14 E. Karapinar and R. P. Agarwal, Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 27 (2019), no. 3, 137-152. https://doi.org/10.2478/auom-2019-0038
15 F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29 (2015), no. 6, 1189-1194. https://doi.org/10.2298/FIL1506189K   DOI
16 X.-L. Liu, A. H. Ansari, S. Chandok, and S. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl. 24 (2018), no. 6, 1103-1114.
17 J. T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640. https://doi.org/10.1090/S0002-9904-1968-11971-8   DOI
18 N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177-188. https://doi.org/10.1016/0022-247X(89)90214-X   DOI
19 S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. http://projecteuclid.org/euclid.pjm/1102978504   DOI
20 M. Olgun, O. Bicer, and T. Alyildiz, A new aspect to Picard operators with simulation functions, Turkish J. Math. 40 (2016), no. 4, 832-837. https://doi.org/10.3906/mat-1505-26   DOI
21 A.-F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro, and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015), 345-355. https://doi.org/10.1016/j.cam.2014.07.011   DOI
22 A. Padcharoen, P. Kumam, P. Saipara, and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math. 42 (2018), no. 3, 419-430. https://doi.org/10.5937/kgjmath1803419p   DOI
23 S. Radenovic and S. Chandok, Simulation type functions and coincidence points, Filomat 32 (2018), no. 1, 141-147. https://doi.org/10.2298/fil1801141r   DOI