Browse > Article
http://dx.doi.org/10.4134/JKMS.j190098

A NOTE ON THE EXISTENCE OF HORIZONTAL ENVELOPES IN THE 3D-HEISENBERG GROUP  

Huang, Yen-Chang (Department of Applied Mathematics National University of Tainan)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.2, 2020 , pp. 415-427 More about this Journal
Abstract
By using the support functions on the xy-plane, we show the necessary and sufficient conditions for the existence of envelopes of horizontal lines in the 3D-Heisenberg group. A method to construct horizontal envelopes from the given ones is also derived, and we classify the solutions satisfying the construction.
Keywords
Sub-Riemannian manifolds; pseudo-hermitian geometry; envelopes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasilev, Singularity Theory. II, Dynamical Systems VIII, Encyclopaedia Math. Sci., Vol. 39, Springer-Verlag, Berlin, 1993.
2 A. Clausen and C. Strub, A general and intuitive envelope theorem, Edinburgh School of Economics Discussion Paper Series, ESE Discussion Papers; No. 274, 2016.
3 H. Edelsbrunner, L. J. Guibas, and M. Shari, The upper envelope of piecewise linear functions: Algorithms and applications, Discrete & Computational Geometry 4 (1989), no. 4, 311-336.   DOI
4 L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, Inc., New York, 1960.
5 V. Marenich, Geodesics in Heisenberg groups, Geom. Dedicata 66 (1997), no. 2, 175-185. https://doi.org/10.1023/A:1004916117293   DOI
6 P. Milgrom and I. Segal, Envelope theorems for arbitrary choice sets, Econometrica 70 (2002), no. 2, 583-601. https://doi.org/10.1111/1468-0262.00296   DOI
7 G. Capitanio, Legendrian graphs generated by tangential family germs, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 29-37. https://doi.org/10.1017/S0013091504000999   DOI
8 V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of differen-tiable maps. Vol. I, translated from the Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics, 82, Birkhauser Boston, Inc., Boston, MA, 1985. https://doi.org/10.1007/978-1-4612-5154-5
9 J.-D. Boissonnat and K. T. G. Dobrindt, On-line construction of the upper envelope of triangles and surface patches in three dimensions, Comput. Geom. 5 (1996), no. 6, 303-320. https://doi.org/10.1016/0925-7721(95)00007-0   DOI
10 O. Calin, D.-C. Chang, and P. Greiner, Geometric mechanics on the Heisenberg group, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 3, 185-252.
11 J. H. Cheng, J. F. Hwang, A. Malchiodi, and P. Yang, Minimal surfaces in pseudoher-mitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 129-177.
12 H.-L. Chiu, Y.-C. Huang, and S.-H. Lai, An application of the moving frame method to integral geometry in the Heisenberg group, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 097, 27 pp. https://doi.org/10.3842/SIGMA.2017.097
13 V. I. Arnold, Mathematical Methods of Classical Mechanics, translated from the Russian by K. Vogtmann and A. Weinstein, second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2063-1
14 H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008.
15 M. C. Griebelery and J. P. Araujo, General envelope theorems for multidimensional type spaces, The 31nd Meeting of the Brazilian Econometric Society, 2009.
16 M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry, 79-323, Progr. Math., 144, Birkhauser, Basel, 1996.
17 V. I. Arnold, Singularities of caustics and wave fronts, Mathematics and its Applications (Soviet Series), 62, Kluwer Academic Publishers Group, Dordrecht, 1990. https://doi.org/10.1007/978-94-011-3330-2
18 J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process. Lett. 33 (1989), no. 4, 169-174. https://doi.org/10.1016/0020-0190(89)90136-1   DOI
19 S. Izumiya, Completely integrable first-order partial differential equations, Surikaisekiken kyusho Kokyuroku No. 807 (1992), 12-31.
20 A. Kock, Envelopes-notion and definiteness, Beitrage Algebra Geom. 48 (2007), no. 2, 345-350.
21 M. Takahashi, Legendre curves in the unit spherical bundle over the unit sphere and evolutes, in Real and complex singularities, 337-355, Contemp. Math., 675, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/675/13600   DOI
22 R. Monti and M. Rickly, Geodetically convex sets in the Heisenberg group, J. Convex Anal. 12 (2005), no. 1, 187-196.
23 M. Ritore and C. Rosales, Area-stationary surfaces in the Heisenberg group $H^1$, Adv. Math. 219 (2008), no. 2, 633-671. https://doi.org/10.1016/j.aim.2008.05.011   DOI
24 L. A. Santalo, Integral Geometry and Geometric Probability, second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511617331
25 R. Thom, Sur la theorie des enveloppes, J. Math. Pures Appl. (9) 41 (1962), 177-192.
26 Y. Li, D. Pei, M. Takahashi, and H. Yu, Envelopes of Legendre curves in the unit spherical bundle over the unit sphere, Q. J. Math. 69 (2018), no. 2, 631-653. https://doi.org/10.1093/qmath/hax056   DOI
27 V. M. Zakalyukin, Envelopes of wave front families, and control theory, Trudy Mat. Inst. Steklov. 209 (1995), Osob. Gladkikh Otobrazh. s Dop. Strukt., 133-142.