1 |
T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111.
|
2 |
A. Kumjian and D. Pask, Actions of Zk associated to higher rank graphs, Ergodic Theory Dynam. Systems 23 (2003), no. 4, 1153-1172. https://doi.org/10.1017/S0143385702001670
DOI
|
3 |
X. Li, Continuous orbit equivalence rigidity, Ergodic Theory Dynam. Systems 38 (2018), no. 4, 1543-1563. https://doi.org/10.1017/etds.2016.98
DOI
|
4 |
V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/surv/117
|
5 |
V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009), 59-123. https://doi.org/10.1515/CRELLE.2009.035
|
6 |
A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics 170, Birkhauser Boston, Inc., Boston, MA, 1999. https://doi.org/10.1007/978-1-4612-1774-9
|
7 |
I. F. Putnam and J. Spielberg, The structure of C*-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), no. 2, 279-299. https://doi.org/10.1006/jfan.1998.3379
DOI
|
8 |
J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics 793, Springer, Berlin, 1980.
|
9 |
M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and C*-algebras, J. Math. Soc. Japan 50 (1998), no. 2, 317-329. https://doi.org/10.2969/jmsj/05020317
DOI
|
10 |
I. Yi, Smale spaces from self-similar graph actions, Rocky Mountain J. Math. 48 (2018), no. 4, 1359-1384. https://doi.org/10.1216/RMJ-2018-48-4-1359
DOI
|
11 |
N. Brownlowe, T. M. Carlsen, and M. F. Whittaker, Graph algebras and orbit equiva-lence, Ergodic Theory Dynam. Systems 37 (2017), no. 2, 389-417. https://doi.org/10.1017/etds.2015.52
DOI
|
12 |
T. Carlsen, S. Eilers, E. Ortega, and G. Restor, Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids, J. Math. Anal. Appl. 469 (2019), no. 2, 1088-1110. https://doi.org/10.1016/j.jmaa.2018.09.056
DOI
|
13 |
T. M. Carlsen and M. L. Winger, Orbit equivalence of graphs and isomorphism of graph groupoids, Math. Scand. 123 (2018), no. 2, 239-248. https://doi.org/10.7146/math.scand.a-105087
DOI
|
14 |
V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1779-1786. https://doi.org/10.2307/2154972
DOI
|
15 |
H. Matui, Homology and topological full groups of etale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27-56. https://doi.org/10.1112/plms/pdr029
DOI
|
16 |
K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger alge-bras, Pacific J. Math. 246 (2010), no. 1, 199-225. https://doi.org/10.2140/pjm.2010.246.199
DOI
|
17 |
K. Matsumoto, Asymptotic continuous orbit equivalence of Smale spaces and Ruelle algebras, to appear in Canad. J. Math.
|
18 |
K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863-877. https://doi.org/10.1215/21562261-2801849
DOI
|
19 |
P. S. Muhly, J. N. Renault, and D. P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), no. 1, 3-22.
|
20 |
V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operator Theory 52 (2004), no. 2, 223-249.
|