Browse > Article
http://dx.doi.org/10.4134/JKMS.j190090

ORBIT EQUIVALENCE ON SELF-SIMILAR GROUPS AND THEIR C-ALGEBRAS  

Yi, Inhyeop (Department of Mathematics Education Ewha Womans University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.2, 2020 , pp. 383-399 More about this Journal
Abstract
Following Matsumoto's definition of continuous orbit equivalence for one-sided subshifts of finite type, we introduce the notion of orbit equivalence to canonically associated dynamical systems, called the limit dynamical systems, of self-similar groups. We show that the limit dynamical systems of two self-similar groups are orbit equivalent if and only if their associated Deaconu groupoids are isomorphic as topological groupoids. We also show that the equivalence class of Cuntz-Pimsner groupoids and the stably isomorphism class of Cuntz-Pimsner algebras of self-similar groups are invariants for orbit equivalence of limit dynamical systems.
Keywords
Self-similar group; limit dynamical system; orbit equivalence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. Reine Angew. Math. 469 (1995), 51-111.
2 A. Kumjian and D. Pask, Actions of Zk associated to higher rank graphs, Ergodic Theory Dynam. Systems 23 (2003), no. 4, 1153-1172. https://doi.org/10.1017/S0143385702001670   DOI
3 X. Li, Continuous orbit equivalence rigidity, Ergodic Theory Dynam. Systems 38 (2018), no. 4, 1543-1563. https://doi.org/10.1017/etds.2016.98   DOI
4 V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/surv/117
5 V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009), 59-123. https://doi.org/10.1515/CRELLE.2009.035
6 A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics 170, Birkhauser Boston, Inc., Boston, MA, 1999. https://doi.org/10.1007/978-1-4612-1774-9
7 I. F. Putnam and J. Spielberg, The structure of C*-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), no. 2, 279-299. https://doi.org/10.1006/jfan.1998.3379   DOI
8 J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics 793, Springer, Berlin, 1980.
9 M. Boyle and J. Tomiyama, Bounded topological orbit equivalence and C*-algebras, J. Math. Soc. Japan 50 (1998), no. 2, 317-329. https://doi.org/10.2969/jmsj/05020317   DOI
10 I. Yi, Smale spaces from self-similar graph actions, Rocky Mountain J. Math. 48 (2018), no. 4, 1359-1384. https://doi.org/10.1216/RMJ-2018-48-4-1359   DOI
11 N. Brownlowe, T. M. Carlsen, and M. F. Whittaker, Graph algebras and orbit equiva-lence, Ergodic Theory Dynam. Systems 37 (2017), no. 2, 389-417. https://doi.org/10.1017/etds.2015.52   DOI
12 T. Carlsen, S. Eilers, E. Ortega, and G. Restor, Flow equivalence and orbit equivalence for shifts of finite type and isomorphism of their groupoids, J. Math. Anal. Appl. 469 (2019), no. 2, 1088-1110. https://doi.org/10.1016/j.jmaa.2018.09.056   DOI
13 T. M. Carlsen and M. L. Winger, Orbit equivalence of graphs and isomorphism of graph groupoids, Math. Scand. 123 (2018), no. 2, 239-248. https://doi.org/10.7146/math.scand.a-105087   DOI
14 V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1779-1786. https://doi.org/10.2307/2154972   DOI
15 H. Matui, Homology and topological full groups of etale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27-56. https://doi.org/10.1112/plms/pdr029   DOI
16 K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger alge-bras, Pacific J. Math. 246 (2010), no. 1, 199-225. https://doi.org/10.2140/pjm.2010.246.199   DOI
17 K. Matsumoto, Asymptotic continuous orbit equivalence of Smale spaces and Ruelle algebras, to appear in Canad. J. Math.
18 K. Matsumoto and H. Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863-877. https://doi.org/10.1215/21562261-2801849   DOI
19 P. S. Muhly, J. N. Renault, and D. P. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), no. 1, 3-22.
20 V. Nekrashevych, Cuntz-Pimsner algebras of group actions, J. Operator Theory 52 (2004), no. 2, 223-249.