1 |
A. Adler, An exact weak law of large numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 417-422.
|
2 |
H. Dehling, O. Sh. Sharipov, and M. Wendler, Bootstrap for dependent Hilbert space- valued random variables with application to von Mises statistics, J. Multivariate Anal. 133 (2015), 200-215.
DOI
|
3 |
L. V. Dung, T. C. Son, and N. T. H. Yen, Weak laws of large numbers for se- quences of random variables with infinite rth moments, Acta Math. Hungar. (2018), doi.org/10.1007/s10474-018-0865-0.
DOI
|
4 |
W. Feller, Note on the law of large numbers and "fair" games, Ann. Math. Statistics 16 (1945), 301-304.
DOI
|
5 |
W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, Inc., New York, 1966.
|
6 |
A. Gut, Limit theorems for a generalized St Petersburg game, J. Appl. Probab. 47 (2010), no. 3, 752-760.
DOI
|
7 |
A. Gut, Probability: A Graduate Course, second edition, Springer Texts in Statistics, Springer, New York, 2013.
|
8 |
N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinate- wise negatively associated random vectors in Hilbert spaces, Acta Math. Hungar. 144 (2014), no. 1, 132-149.
DOI
|
9 |
M.-H. Ko, Complete convergence for coordinatewise asymptotically negatively associated random vectors in Hilbert spaces, Comm. Statist. Theory Methods 47 (2018), no. 3, 671- 680.
DOI
|
10 |
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295.
DOI
|
11 |
M.-H. Ko, T.-S. Kim, and K.-H. Han, A note on the almost sure convergence for de- pendent random variables in a Hilbert space, J. Theoret. Probab. 22 (2009), no. 2, 506-513.
DOI
|
12 |
E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
DOI
|
13 |
D. Li, A. Rosalsky, and A. I. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
|
14 |
R. Li and W. Yang, Strong convergence of pairwise NQD random sequences, J. Math. Anal. Appl. 344 (2008), no. 2, 741-747.
DOI
|
15 |
Q. Y. Wu, Convergence properties of pairwise NQD random sequences, Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 3, 617-624.
DOI
|
16 |
P. A. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213.
DOI
|
17 |
T. Nakata, Weak laws of large numbers for weighted independent random variables with infinite mean, Statist. Probab. Lett. 109 (2016), 124-129.
DOI
|