Browse > Article
http://dx.doi.org/10.4134/JKMS.j180217

WEAK LAWS OF LARGE NUMBERS FOR WEIGHTED COORDINATEWISE PAIRWISE NQD RANDOM VECTORS IN HILBERT SPACES  

Le, Dung Van (Department of Mathematics The University of Da Nang - University of Science and Education)
Ta, Son Cong (Faculty of Mathematics Mechanics and Informatics VNU Hanoi University of Science)
Tran, Cuong Manh (Faculty of Mathematics Mechanics and Informatics VNU Hanoi University of Science)
Publication Information
Journal of the Korean Mathematical Society / v.56, no.2, 2019 , pp. 457-473 More about this Journal
Abstract
In this paper, we investigate weak laws of large numbers for weighted coordinatewise pairwise negative quadrant dependence random vectors in Hilbert spaces in the case that the decay order of tail probability is r for some 0 < r < 2. Moreover, we extend results concerning Pareto-Zipf distributions and St. Petersburg game.
Keywords
infinite moments; weak law of large numbers; coordinatewise pairwise NQD random vectors; Hilbert spaces; weighted sums;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Adler, An exact weak law of large numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 3, 417-422.
2 H. Dehling, O. Sh. Sharipov, and M. Wendler, Bootstrap for dependent Hilbert space- valued random variables with application to von Mises statistics, J. Multivariate Anal. 133 (2015), 200-215.   DOI
3 L. V. Dung, T. C. Son, and N. T. H. Yen, Weak laws of large numbers for se- quences of random variables with infinite rth moments, Acta Math. Hungar. (2018), doi.org/10.1007/s10474-018-0865-0.   DOI
4 W. Feller, Note on the law of large numbers and "fair" games, Ann. Math. Statistics 16 (1945), 301-304.   DOI
5 W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, Inc., New York, 1966.
6 A. Gut, Limit theorems for a generalized St Petersburg game, J. Appl. Probab. 47 (2010), no. 3, 752-760.   DOI
7 A. Gut, Probability: A Graduate Course, second edition, Springer Texts in Statistics, Springer, New York, 2013.
8 N. V. Huan, N. V. Quang, and N. T. Thuan, Baum-Katz type theorems for coordinate- wise negatively associated random vectors in Hilbert spaces, Acta Math. Hungar. 144 (2014), no. 1, 132-149.   DOI
9 M.-H. Ko, Complete convergence for coordinatewise asymptotically negatively associated random vectors in Hilbert spaces, Comm. Statist. Theory Methods 47 (2018), no. 3, 671- 680.   DOI
10 K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295.   DOI
11 M.-H. Ko, T.-S. Kim, and K.-H. Han, A note on the almost sure convergence for de- pendent random variables in a Hilbert space, J. Theoret. Probab. 22 (2009), no. 2, 506-513.   DOI
12 E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.   DOI
13 D. Li, A. Rosalsky, and A. I. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
14 R. Li and W. Yang, Strong convergence of pairwise NQD random sequences, J. Math. Anal. Appl. 344 (2008), no. 2, 741-747.   DOI
15 Q. Y. Wu, Convergence properties of pairwise NQD random sequences, Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 3, 617-624.   DOI
16 P. A. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213.   DOI
17 T. Nakata, Weak laws of large numbers for weighted independent random variables with infinite mean, Statist. Probab. Lett. 109 (2016), 124-129.   DOI