1 |
V. Alexeev and D. Orlov, Derived categories of Burniat surfaces and exceptional collections, Math. Ann. 357 (2013), no. 2, 743-759.
DOI
|
2 |
A. Auel and M. Bernardara, Cycles, derived categories, and rationality, in Surveys on recent developments in algebraic geometry, 199-266, Proc. Sympos. Pure Math., 95, Amer. Math. Soc., Providence, RI, 2017.
|
3 |
A. A. Beilinson, Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68-69.
DOI
|
4 |
Ch. Bohning, H.-C. G. von Bothmer, L. Katzarkov, and P. Sosna, Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1569- 1592.
DOI
|
5 |
C. Bohning, H.-C. G. von Bothmer, and P. Sosna, On the derived category of the classical Godeaux surface, Adv. Math. 243 (2013), 203-231.
DOI
|
6 |
A. I. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR-Izv. 34 (1990), no. 1, 23-42; translated from Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25-44.
DOI
|
7 |
A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and mutations, Math. USSR-Izv. 35 (1990), no. 3, 519-541; translated from Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337.
DOI
|
8 |
A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, https://arxiv.org/abs/alg-geom/9506012; arXiv:9506012v1.
|
9 |
A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math. 42 (1994), no. 2, 219-260; translated from Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 2, 3-50.
DOI
|
10 |
A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327-344.
DOI
|
11 |
M. Brown and I. Shipman, The McKay correspondence, tilting, and rationality, Michigan Math. J. 66 (2017), no. 4, 785-811.
DOI
|
12 |
A. Elagin and V. Lunts, On full exceptional collections of line bundles on del Pezzo surfaces, Mosc. Math. J. 16 (2016), no. 4, 691-709.
DOI
|
13 |
I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces, in Birational geometry, rational curves, and arithmetic, 93-132, Simons Symp, Springer, Cham, 2013.
|
14 |
C. Diemer, L. Katzarkov, and G. Kerr, Compactifications of spaces of Landau-Ginzburg models, Izv. Math. 77 (2013), no. 3, 487-508; translated from Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 3, 55-76.
DOI
|
15 |
D. Eisenbud and A. Van de Ven, On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981), no. 4, 453-463.
DOI
|
16 |
S. Galkin, L. Katzarkov, A. Mellit, and E. Shinder, Derived categories of Keum's fake projective planes, Adv. Math. 278 (2015), 238-253.
DOI
|
17 |
S. Galkin and E. Shinder, Exceptional collections of line bundles on the Beauville surface, Adv. Math. 244 (2013), 1033-1050.
DOI
|
18 |
S. Gorchinskiy and D. Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Etudes Sci. 117 (2013), 329-349.
DOI
|
19 |
L. Hille, Exceptional sequences of line bundles on toric varieties, in Mathematisches Institut, Georg-August-Universitat Gottingen: Seminars 2003/2004, 175-190, Universit atsdrucke Gottingen, Gottingen, 2004.
|
20 |
L. Hille and M. Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230-1280.
DOI
|
21 |
J. Keum, A vanishing theorem on fake projective planes with enough automorphisms, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7067-7083.
DOI
|
22 |
L. Hille and M. Perling, Tilting bundles on rational surfaces and quasi-hereditary algebras, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 625-644.
DOI
|
23 |
A. Hochenegger and N. O. Ilten, Exceptional sequences on rational -surfaces, Manuscripta Math. 142 (2013), no. 1-2, 1-34.
DOI
|
24 |
D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006.
|
25 |
H. K. Kim, Y.-H. Kim, and K.-S. Lee, Quasiphantom categories on a family of surfaces isogenous to a higher product, J. Algebra 473 (2017), 591-606.
DOI
|
26 |
S. A. Kuleshov and D. O. Orlov, Exceptional sheaves on del Pezzo surfaces, Russian Acad. Sci. Izv. Math. 44 (1995), no. 3, 479-513; translated from Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 3, 53-87.
DOI
|
27 |
A. Kuznetsov, Derived categories of Fano threefolds, Proc. Steklov Inst. Math. 264 (2009), no. 1, 110-122; translated from Tr. Mat. Inst. Steklova 264 (2009), Mnogomernaya Algebraicheskaya Geometriya, 116-128.
DOI
|
28 |
A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, https://arxiv.org/ abs/0904.4330; arXiv:0904.4330v1.
|
29 |
A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry, in Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, 635-660, Kyung Moon Sa, Seoul, 2014.
|
30 |
K.-S. Lee, Derived categories of surfaces isogenous to a higher product, J. Algebra 441 (2015), 180-195.
DOI
|
31 |
P. Sosna, Some remarks on phantom categories and motives, https://arxiv.org/ abs/1511.07711; arXiv: 1511.07711v2.
|
32 |
K.-S. Lee, Exceptional sequences of maximal length on some surfaces isogenous to a higher product, J. Algebra 454 (2016), 308-333.
DOI
|
33 |
K.-S. Lee and T. Shabalin, Exceptional collections on some fake quadrics, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2299-2313.
DOI
|
34 |
D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133-141; translated from Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852-862.
DOI
|
35 |
M. Szurek and J. A. Wisniewski, Fano bundles of rank 2 on surfaces, Compositio Math. 76 (1990), no. 1-2, 295-305.
|
36 |
C. Vial, Exceptional collections, and the Neron-Severi lattice for surfaces, Adv. Math. 305 (2017), 895-934.
DOI
|