1 |
L. Vanhecke and D. Janssens, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27.
DOI
|
2 |
Y. Wang, Minimal Reeb vector fields on almost Kenmotsu manifolds, Czechoslovak Math. J. 67(142) (2017), no. 1, 73-86.
|
3 |
G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), no. 2, 325-344.
|
4 |
C. M. Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997), no. 3, 319-330.
DOI
|
5 |
A. Yildiz, U. C. De, and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684-693.
DOI
|
6 |
S. Deshmukh, U. C. De, and F. Al-Solamy, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Publ. Math. Debrecen 88 (2016), no. 3-4, 439-448.
DOI
|
7 |
S. Deshmukh and M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca 63 (2013), no. 6, 1361-1370.
DOI
|
8 |
O. Gil-Medrano, Relationship between volume and energy of vector fields, Differential Geom. Appl. 15 (2001), no. 2, 137-152.
|
9 |
O. Gil-Medrano and E. Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. (2) 54 (2002), no. 1, 71-84.
DOI
|
10 |
J. C. Gonzalez-Davila and L. Vanhecke, Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), no. 3-4, 385-404.
DOI
|
11 |
J. C. Gonzalez-Davila and L. Vanhecke, Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom. 72 (2001), no. 1-2, 65-76.
DOI
|
12 |
A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
|
13 |
J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
|
14 |
Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50.
DOI
|
15 |
Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87.
DOI
|
16 |
D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), no. 2, 258-274.
DOI
|
17 |
Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323.
|
18 |
A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
|
19 |
D. Perrone, Almost contact metric manifolds whose Reeb vector field is a harmonic section, Acta Math. Hungar. 138 (2013), no. 1-2, 102-126.
|
20 |
M. D. Siddiqi, A. Haseeb, and M. Ahmad, On generalized Ricci-recurrent ()-trans-Sasakian manifolds, Palest. J. Math. 4 (2015), no. 1, 156-163.
|
21 |
N. Aktan, M. Yildirim, and C. Murathan, Almost f-cosymplectic manifolds, Mediterr. J. Math. 11 (2014), no. 2, 775-787.
DOI
|
22 |
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
|
23 |
D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199-207.
|
24 |
X. Chen, Notes on Ricci solitons in f-cosymplectic manifolds, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 3, 242-253.
|
25 |
D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
DOI
|
26 |
U. C. De and K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 27 (2012), no. 4, 795-808.
DOI
|
27 |
K. De and U. C. De, Projective curvature tensorin 3-dimensional connected trans-Sasakian manifolds, Acta Univ. Palackianae Olomucensis, Facultas Rerum Naturalium, Math. 55 (2016), 29-40.
|
28 |
D. Debnath and A. Bhattacharyya, On generalized -recurrent trans-Sasakian manifolds, Acta Univ. Apulensis Math. Inform. No. 36 (2013), 253-265.
|
29 |
U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265-277.
|
30 |
U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247-255.
|
31 |
S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2951-2958.
|
32 |
S. Deshmukh, Geometry of 3-dimensional trans-Sasakaian manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62 (2016), no. 1, 183-192.
|
33 |
S. Deshmukh and F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 4, 2099-2104.
|