Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.5.1017

INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS  

Hassan, Taher S. (Department of Mathematics Faculty of Science Mansoura University)
Kong, Qingkai (Department of Mathematics Northern Illinois University)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.5, 2012 , pp. 1017-1030 More about this Journal
Abstract
We consider forced second order differential equation with $p$-Laplacian and nonlinearities given by a Riemann-Stieltjes integrals in the form of $$(p(t){\phi}_{\gamma}(x^{\prime}(t)))^{\prime}+q_0(t){\phi}_{\gamma}(x(t))+{\int}^b_0q(t,s){\phi}_{{\alpha}(s)}(x(t))d{\zeta}(s)=e(t)$$, where ${\phi}_{\alpha}(u):={\mid}u{\mid}^{\alpha}\;sgn\;u$, ${\gamma}$, $b{\in}(0,{\infty})$, ${\alpha}{\in}C[0,b)$ is strictly increasing such that $0{\leq}{\alpha}(0)<{\gamma}<{\alpha}(b-)$, $p$, $q_0$, $e{\in}C([t_0,{\infty}),{\mathbb{R}})$ with $p(t)>0$ on $[t_0,{\infty})$, $q{\in}C([0,{\infty}){\times}[0,b))$, and ${\zeta}:[0,b){\rightarrow}{\mathbb{R}}$ is nondecreasing. Interval oscillation criteria of the El-Sayed type and the Kong type are obtained. These criteria are further extended to equations with deviating arguments. As special cases, our work generalizes, unifies, and improves many existing results in the literature.
Keywords
interval criteria; forced oscillation; $p$-Laplacian; nonlinear differential equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. G. Sun, C. H. Ou, and J. S. W. Wong, Interval oscillation theorems for a linear second-order differential equation, Comput. Math. Appl. 48 (2004), no. 10-11, 1693-1699.   DOI   ScienceOn
2 Y. G. Sun and J. S. W. Wong, Note on forced oscillation of nth-order sublinear differ- ential equations, J. Math. Anal. Appl. 298 (2004), no. 1, 114-119.   DOI   ScienceOn
3 Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), no. 1, 549-560.   DOI   ScienceOn
4 H. Teufel, Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 148-152.   DOI
5 J. S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19 (1988), no. 3, 667-675.   DOI
6 J. S. W. Wong, Oscillation criteria for a forced second-order linear differential equation, J. Math. Anal. Appl. 231 (1999), no. 1, 235-240.   DOI   ScienceOn
7 Q. Yang, Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. Math. Comput. 136 (2003), no. 1, 49-64.
8 M. K. Kwong and J. S. W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983), no. 2, 705-722.   DOI   ScienceOn
9 A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998), no. 1, 123-125.   DOI   ScienceOn
10 C. H. Ou and J. S. W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001), no. 2, 722-731.   DOI   ScienceOn
11 Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482-492.   DOI
12 S. M. Rankin, Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), no. 3, 550-553.   DOI   ScienceOn
13 A. Skidmore and J. J. Bowers, Oscillatory behavior of solutions of y′' + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317-323.   DOI   ScienceOn
14 A. Skidmore and W. Leighton, On the differential equation y"+p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46-55.   DOI
15 T. S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008), no. 4, 715-732.
16 Y. G. Sun, A note on Nasr's and Wong's papers, J. Math. Anal. Appl. 286 (2003), no. 1, 363-367.   DOI   ScienceOn
17 Y. G. Sun and Q. Kong, Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals, Comput. Math. Appl. 62 (2011), no. 1, 243-252.   DOI   ScienceOn
18 Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second order differential equations with mixed nonlinearities, Appl. Math. Comp. 198 (2008), no. 1, 375-381.   DOI   ScienceOn
19 T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential equations with mixed nonlinearities, Acta Mathematica Scientia 31B (2011), no. 2, 613-626.
20 T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011), 279-294.
21 A. G. Kartsatos, On the maintenance of oscillations of nth order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355-363.   DOI
22 A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-383.   DOI   ScienceOn
23 M. S. Keener, On the solutions of certain linear nonhomogeneous second-order differ- ential equations, Applicable Anal. 1 (1971), no. 1, 57-63.   DOI   ScienceOn
24 Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), no. 1, 258-270.   DOI   ScienceOn
25 E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
26 Q. Kong, Oscillation criteria for second order half-linear differential equations, Differential equations with applications to biology (Halifax, NS, 1997), 317-323, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.
27 Q. Kong and J. S. W. Wong, Oscillation of a forced second order differential equations with a deviating argument, Funct. Differ. Equ. 17 (2010), no. 1-2, 141-155.
28 Q. Kong and B. G. Zhang, Oscillation of a forced second order nonlinear equation, Chinese Ann. Math. Ser. B 15 (1994), no. 1, 59-68.
29 G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill's equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 159-171.   DOI
30 G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), no. 1, 190-200.   DOI
31 D. Cakmak and A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument, Comput. Math. Appl. 49 (2005), no. 11-12, 1647-1653.   DOI   ScienceOn
32 C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399-434.   DOI
33 E. M. Elabbasy and T. S. Hassan, Interval oscillation for second order sublinear differ- ential equations with a damping term, Int. J. Dyn. Syst. Differ. Equ. 1 (2008), no. 4, 291-299.
34 E. M. Elabbasy, T. S. Hassan, and S. H. Saker, Oscillation of second-order nonlinear differential equations with a damping term, Electron. J. Differential Equations 2005 (2005), No. 76, 13 pp.
35 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Second ed., Cambridge University Press, Cambridge, 1988.
36 M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 813-817.
37 L. Erbe, T. S. Hassan, and A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008), no. 1, 53-71.
38 A. F. Guvenilir and A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006), no. 9-10, 1395-1404.   DOI   ScienceOn
39 R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.