Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.6.1279

BRILL-NOETHER DIVISORS ON THE MODULI SPACE OF CURVES AND APPLICATIONS  

BALLICO EDOARDO (Universita di Trento Dipartimento di Matematica Via Sommarvie)
FONTANARI CLAUDIO (Politecnico di Torino Dipartimento di Matematica)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.6, 2005 , pp. 1279-1285 More about this Journal
Abstract
Here we generalize previous work by Eisenbud-Harris and Farkas in order to prove that certain Brill-Noether divisors on the moduli space of curves have distinct supports. From this fact we deduce non-trivial regularity results for a higher co dimensional Brill-Noether locus and for the general $\frac{g+1}{2}$-gonal curve of odd genusg.
Keywords
Brill-Noether divisor; moduli space of curves;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 D. Eisenbud and J. Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337-371   DOI
2 D. Eisenbud and J. Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math. 87 (1987), no. 3, 495-515   DOI
3 D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number-1, Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), no. 1, 33-53   DOI
4 G. Farkas, The geometry of the moduli space of curves of genus 23, Math. Ann. 318 (2000), no. 1, 43-65   DOI   ScienceOn
5 F. Steffen, A generalized principal ideal theorem with an application to Brill-Noether theory, Invent. Math. 132 (1998), no. 1, 73-89   DOI   ScienceOn
6 D. Edidin, Brill-Noether theory in codimension-two, J. Algebraic Geom. 2 (1993), no. 1, 25-67
7 E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren Math. Wiss. 267 (1985)
8 M.-C. Chang and Z. Ran, The Kodaira dimension of the moduli space of curves of genus 15, J. Differential Geom. 24 (1986), no. 2, 205-220   DOI
9 M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. Ecole Norm. Sup. (4) 21 (1988), no. 3, 455-475   DOI
10 D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus ¸ 23, Invent. Math. 90 (1987), no. 2, 359-387   DOI
11 M. Cornalba and J. Harris, Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999), 347-371   DOI
12 J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-88   DOI
13 M. Cornalba and J. Harris, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55   DOI