Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.4.673

SOME RECURRENCE RELATIONS OF MULTIPLE ORTHOGONAL POLYNOMIALS  

Lee, Dong-Won (Department of Mathematics Teachers College Kyungpook National Universtiy)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.4, 2005 , pp. 673-693 More about this Journal
Abstract
In this paper, we first find a necessary and sufficient condition for the existence of multiple orthogonal polynomials by the moments of a pair of measures $(d{\mu},\;dv)$ and then give representations for multiple orthogonal polynomials. We also prove four term recurrence relations for multiple orthogonal polynomials of type II and several interesting relations for multiple orthogonal polynomials are given. A generalized recurrence relation for multiple orthogonal polynomials of type I is found and then four term recurrence relations are obtained as a special case.
Keywords
orthogonal polynomials; multiple orthogonal polynomials; recurrence relation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. Angelesco, Sur l'approximation simultanee de plusieurs integrales definies, C. R. Math. Acad. Sci. Paris 167 (1918), 629-631
2 A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), 3887-3914   DOI   ScienceOn
3 A. I. Aptekarev and H. Stahl, Asymptotics of Hermite-Pade polynomials, Progress in Approximation Theory, in A. Gonchar and E.B. Saff (Eds.) Springer Ser. Comput. Math. 19 (1992), 127-167   DOI
4 J. Arvesu, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math. 153 (2003), 19-45   DOI   ScienceOn
5 E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Trans. Amer. Math. Soc. 92 (1991)
6 V. N. Sorokin and J. Van Iseghem, Algebraic aspects of matrix orthogonality for vector polynomials, J. Approx. Theory 90 (1997), 97-116   DOI   ScienceOn
7 W. Van Assche and E. Coussement, Some classical multiple orthogonal polyno-mials, J. Comput. Appl. Math. 127 (2001), 317-347   DOI   ScienceOn
8 J. Van Iseghem, Recurrence relations in the table of vector orthogonal polynomi- als, Nonlinear Numerical Methods and Rational Approximation II, Math. Appl. 296 (1994), 61-69
9 V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Sb. Mat. 82 (1995), 199-1216   DOI   ScienceOn
10 M. G. de Bruin, Simultaneous Pade approximants and orthogonality, Lecture Notes in Math. 1171 (1985), 74-83   DOI
11 A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423-447   DOI   ScienceOn
12 V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Mat. Sb. 185 (1994), 79-100
13 B. Beckermann, J. Coussement, and W. Van Assche, Multiple Wilson and Jacobi-Pineiro polynomials, J. Approx. Theory 132 (2005), 155-181   DOI   ScienceOn
14 C. Brezinski and J. Van Iseghem, Vector orthogonal polynomials of dimension -d, Approximation and computation (West Lafayette, IN, 1993), Internat. Ser. Numer. Math. 119 (1994), 29-39
15 J. Coussement and W. Van Assche, Gauss quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math. 178 (2005), 131-145   DOI   ScienceOn
16 K. Mahler, Perfect systems, Compositio Math. 19 (1968), 95-166