Browse > Article
http://dx.doi.org/10.4134/JKMS.2003.40.2.195

GENERALIZED SET-VALVED STRONGLY NONLINEAR VARIATIONAL INEQUALITIES IN BANACH SPACES  

Cho, Y.J. (Department of Mathematics Gyeongsan national University)
Fang, Y.P. (Department of Mathemetics Sichuan University)
Huang, N.J. (Department of Mathemetics Sichuan University)
Kim, K.H. (Department of Mathematics Gyeongsan national University)
Publication Information
Journal of the Korean Mathematical Society / v.40, no.2, 2003 , pp. 195-205 More about this Journal
Abstract
In this paper, we introduce and study a new class of generalized strongly nonlinear variational inequalities with setvalued mappings. By using the KKM technique, we prove the existence and uniqueness of solution for this class of generalized setvalued strongly nonlinear variational inequalities in reflexive Banach spaces. Our results include the main results of Verma [16], [17] as special cases.
Keywords
strongly nonlinear variational inequality; set valued-mapping; generalized monotone type mapping; generalized Lipschitzian type mapping; the KKm mapping;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Some properties of convex sets related to fixed point theorem /
[ K. Fan ] / Math. Annal.   DOI
2 Nonlinear variational inequalities on convex subsets of Banach spaces /
[ R. U. Verma ] / Appl. Math. Lett.   DOI   ScienceOn
3 Sensitivity analysis for strongly nonlinear quasi-variational inclusions /
[ R. P. Agarwal;Y. J. Cho;N. J. Huang ] / Appl. Math. Lett.   DOI   ScienceOn
4 Generalized nonlinear implicit quasi-variational inclusion and an application to implicit variational inequalities /
[ N. J. Huang ] / Z. Angew. Math. Mech.   DOI   ScienceOn
5 Generalized nonlinear mixed quasi-variational inequalities /
[ N. J. Huang;M. R. Bai;Y. J. Cho;S. M. Kang ] / Computers Math. Appl.   DOI   ScienceOn
6 A new class of generalized nonlinear mixed quasi-variational inequalities in Banach spaces /
[ N. J. Huang;Y. P. Fang;Y. J. Cho ] / Math. Inequal. Appl.
7 /
[ G. X. Z. Yuan ] / KKM Theory and Applications
8 On the generalized implicit quasi-variational inequalities /
[ N. J. Huang ] / J. Math. Anal. Appl.   DOI   ScienceOn
9 Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications /
[ P. T. Harker;J. S. Pang ] / Math. Programming   DOI
10 On monotone nonlinear variational inequality problems /
[ R. U. Verma ] / Comment. Math. Univ. Carolinae
11 A new completely general class of variational inclusions with noncompact valued mappings /
[ N. J. Huang ] / Computers Math. Appl.   DOI   ScienceOn
12 /
[ F. Giannessi;A. Maugeri ] / Variational Inequalities and Network Equilibrium Problems
13 Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities /
[ N. J. Huang;C. X. Deng ] / J. Math. Anal. Appl.   DOI   ScienceOn
14 Random generalized set-valued strongly nonlinear implicit quasi-variational inequalities /
[ Y. J. Cho;N. J. Huang;S. M. Kang ] / J. Inequal. Appl.   DOI
15 Generalized set-valued variational inclusions in Banach spaces /
[ S. S. Chang;Y. J. Cho;B. S. Lee;I. H. Jung ] / J. Math. Anal. Appl.   DOI   ScienceOn
16 /
[ E. Zeidler ] / Nonlinear Functional Analysis and Its Applications Ⅳ
17 Modified projection-type methods for monotone variational inequalities /
[ M. V. Solodov;P. Tseng ] / SIAM J. Control. Optim.   DOI   ScienceOn
18 On the generalized set-valued strongly nonlinear implicit variational inequalities /
[ N. J. Huang;Y. P. Liu;Y. Y. Tang;M. R. Bai ] / Computers Math. Appl.   DOI   ScienceOn
19 /
[ P. D. Panagiotopoulos ] / Inequality Problems in Mechanics and Applications
20 Generalized pseudo-contractions and nonlinear variational inequalities /
[ R. U. Verma ] / Publ. Math. Debrecen