Browse > Article
http://dx.doi.org/10.4134/JKMS.2002.39.3.425

ESTIMATES OF THE BERGMAN KERNEL FUNCTION ON PSEUDOCONVEX DOMAINS WITH COMPARABLE LEVI FORM  

Cho, Sang-Hyun (Department of Mathematics Sogang University)
Publication Information
Journal of the Korean Mathematical Society / v.39, no.3, 2002 , pp. 425-437 More about this Journal
Abstract
Let $\Omega$ be a smoothly bounded pseudoconvex domain in $C^{n}$ and let $z^{0}$ $\in$b$\Omega$ a point of finite type. We also assume that the Levi form of b$\Omega$ is comparable in a neighborhood of $z^{0}$ . Then we get precise estimates of the Bergman kernel function, $K_{\Omega}$(z, w), and its derivatives in a neighborhood of $z^{0}$ . .
Keywords
Bergman kernel function; finite type;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Boundary behavior of the Bergman kernel function in <TEX>$C^2$</TEX> /
[ J. McNeal ] / Duke Math. J.   DOI
2 Estimates of invariant metrics on pseudoconvex domains of dimension two /
[ D. W. Catlin ] / Math. Z.   DOI
3 Peak function and its application /
[ S. Cho ] / J. Korean Math. Soc.   과학기술학회마을
4 Boundary behavior of the Bergaman kernel function on pseudoconvex domains /
[ T. Ohsawa ] / Publ. RIMS. Kyoto Univ.   DOI
5 Real hypersurfaces, order of contact, and applications /
[ J. D'Angelo ] / Ann. of Math.   DOI   ScienceOn
6 Uber die 1. und 2 Ableittungen der Bergmanschen Kernfunktion und ihr Rondverhalten /
[ K. Diederich ] / Math. Ann.   DOI
7 The Bergman kernel function. Differentiability at the boundary /
[ N. Kerzman ] / Math. Ann.   DOI
8 A construction of peak functions on locally convex domains in <TEX>$C^n$</TEX> /
[ S. Cho ] / Nagoya Math. J.   DOI
9 Subelliptic estimates for the a-Neumann problem on pseudoconvex domains /
[ D. W. Catlin ] / Ann. of Math.   DOI   ScienceOn
10 Estimates of the Bergman kernel function on certain pseudoconvex domains in <TEX>$C^n$</TEX> /
[ S. Cho ] / Math. Z.
11 /
[ S. Cho ] / Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form
12 The growth of the Bergman kernel on pseudoconvex domains of homogeneous finite diagonal type /
[ G. Herbort ] / Nagoya Math. J.   DOI
13 Boundary behavior of the Bergman kernel function on some pseudoconvex in <TEX>$C^n$</TEX> /
[ S. Cho ] / Trans. Amer. Math. Soc.   DOI   ScienceOn
14 A construction of peak functions on some finite type domains /
[ J. E. Fornaess;J. McNeal ] / Amer. J. Math.   DOI   ScienceOn
15 The Bergman kernel on Uniformly extendable Pseudoconvex domains /
[ K. Diederich;G. Herbort;T. Ohsawa ] / Math. Ann.
16 Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudokonvexen Gebieten /
[ K. Diederich ] / Math. Ann.
17 The Bergman kernel and biholomorphic mappings of pseudoconvex domains /
[ Ch. Fefferman ] / Invent. Math.   DOI