Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.5.557

THERMAL CONDUCTION IN MAGNETIZED TURBULENT GAS  

CHO JUNGYEON (Department of Astronomy & Space Science, Chungnam National University)
LAZARIAN A. (Department of Astronomy, U. of Wisconsin)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.5, 2004 , pp. 557-562 More about this Journal
Abstract
We discuss diffusion of particles in turbulent flows. In hydrodynamic turbulence, it is well known that distance between two particles imbedded in a turbulent flow exhibits a random walk behavior. The corresponding diffusion coefficient is ${\~}$ ${\upsilon}_{inj}{\iota}_{turb}$, where ${\upsilon}_{inj}$ is the amplitude of the turbulent velocity and ${\iota}_{turb}$ is the scale of the turbulent motions. It Is not clear whether or not we can use a similar expression for magnetohydrodynamic turbulence. However, numerical simulations show that mixing motions perpendicular to the local magnetic field are, up to high degree, hydrodynamical. This suggests that turbulent heat transport in magnetized turbulent fluid should be similar to that in non-magnetized one, which should have a diffusion coefficient ${\upsilon}_{inj}{\iota}_{turb}$. We review numerical simulations that support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent cooling flow formation when turbulence is vigorous.
Keywords
clusters of galaxies; ISM: general; MHD; turbulence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maron, J. & Goldreich, P. 2001, ApJ, 554,1175   DOI   ScienceOn
2 Fabian, A. C. 1994, ARA&A, 32, 277   DOI   ScienceOn
3 Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., & Peterson, J. R. 2001, MNRAS, 321, L20   DOI   ScienceOn
4 Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763   DOI   ScienceOn
5 Hall, J. 1949, Science, 109, 166   DOI
6 Hiltner, W. 1949, Science, 109, 471
7 Ishihara, T. & Kaneda, Y. 2001, APS, DFD01, BCOO1
8 Jiang, G. & Wu, C. 1999, J. Compo Phys., 150, 561   DOI   ScienceOn
9 Kim, K., Kronberg, P., Giovannini, G., & Venturi, T. 1989, Nature, 341, 720   DOI
10 Cho, J., Lazarian, A., Vishniac, E. 2002, ApJ, 564, 291   DOI   ScienceOn
11 Begelman, M. & Fabian, A. 1990, MNRAS, 244, 26
12 Berghofer, T. W., Bowyer, S., Lieu, R., & Knude, J. 1998, ApJ, 500, 838   DOI   ScienceOn
13 Boffetta, G., Sokolov, I. 2002, Phy. Rev. Lett., 88(9), 094501
14 Politano, H. & Pouquet, A., 1995, Phys. Rev. E, Vol. 52, No.1,636   DOI   ScienceOn
15 Richardson, L. F. 1926, Proc. R. Soc. London, Ser. A, 110, 709   DOI
16 She, Z.-S. & Leveque, E. 1994, Phys. Rev. Lett., 72(3), 336   DOI   ScienceOn
17 Smith, R. & Cox, D. 2001, ApJS, 134, 283   DOI   ScienceOn
18 Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Interscience)
19 Zakamska, N. L, & Narayan, R. 2002, astro-ph/0207127
20 Muller, W.-C. & BiskamP, D. 2000, Phys. Rev. Lett., 84(3)475   DOI   ScienceOn
21 Narayan, R., & Medvedev M. V. 2001, ApJ, 562, L129   DOI   ScienceOn
22 Liu, X. & Osher, S. 1998 J. Compo Phys., 141, 1   DOI   ScienceOn
23 Cho, J., Lazarian, A., Honein, A., Knaepen, B., Kassinos, S., & Moin, P. 2003, ApJ, 589, L77   DOI   ScienceOn
24 Lazarian, A. & Vishniac, E. T. 1999, ApJ, 517, 700   DOI
25 Lesieur, M. 1990, Turbulence in fluids: stochastic and numerical modelling, 2nd. rev. ed. (Dordrecht; Kluwer Academic Publishers)