Browse > Article
http://dx.doi.org/10.9714/psac.2014.16.2.007

A review on angle resolved photoemission spectroscopy studies of Fe-based superconductors  

Seo, J.J. (Department of Physics, Yonsei University)
Kim, C. (Department of Physics, Yonsei University)
Publication Information
Progress in Superconductivity and Cryogenics / v.16, no.2, 2014 , pp. 7-19 More about this Journal
Abstract
Since the discovery of iron-based superconductors in 2008, extensive and intensive studies have been performed to find the microscopic theory for the high temperature superconductivity in the materials. Electronic structure is the basic and essential information that is needed for the microscopic theory. Experimentally, angle resolved photoelectron spectroscopy (ARPES) is the most direct tool to obtain the electronic structure information, and therefore has played a vital role in the research. In this review, we review what has been done so far and what is needed to be done in ARPES studies of iron-based superconductors in search of the microscopic theory. This review covers issues on the band structure, orbital order/fluctuation, and gap structure/symmetries as well as some of the theories.
Keywords
iron-based superconductors; electronic structures; angle resolved photoemission; microscopic mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Tanatar et al, "Pseudogap and its critical point in the heavily doped $Ba(Fe_{1-x}Co_x)_2As_2$ from c-axis resistivity measurements," Phys. Rev. B, vol. 82, pp. 134528, 2010.   DOI   ScienceOn
2 S. H. Baek et al, "Pseudogap-like phase in $Ca(Fe_{1-x}Co_x)_2As_2$ revealed by 75As NQR," Phys. Rev. B, vol. 84, pp. 094510, 2011.   DOI   ScienceOn
3 S. J. Moon et al, "Infrared Measurement of the Pseudogap of P-Doped and Co-doped High-Temperature $BaFe_2As_2$ Superconductors," Phys. Rev. Lett., vol. 109, pp. 027006, 2012.   DOI
4 K. Hashimoto et al, "A sharp peak of the zero-temperature penetration depth at optimal composition in $BaFe_2(As_{1-x}P_x)_2$," Science, vol. 336, pp. 1554, 2012.   DOI   ScienceOn
5 P. Walmsley et al, "Quasiparticle mass enhancement close to the quantum critical point in $BaFe_2(As_{1-x}P_x)_2$," arXiv:1303.3396   DOI
6 J. K. Dong et al, "Quantum criticality and nodal superconductivity in the FeAs-based superconductor $KFe_2As_2$," Phys. Rev. Lett., vol. 104, pp. 087005, 2010.   DOI   ScienceOn
7 Y. Nakai et al, "Unconventional superconductivity and antiferro magnetic quantum critical behavior in the isovalent doped $BaFe_2(As_{1-x}P_x)_2$," Phys. Rev. Lett., vol. 105, pp. 107003, 2010.   DOI   ScienceOn
8 H.-Y. Liu et al, "Pseudogap and Superconducting Gap in $SmFeAs(O_{1-x}F_x)$ Superconductor from Photoemission Spectroscopy," Chin. Phys. Lett., vol. 25, pp. 3761, 2008.   DOI   ScienceOn
9 Z. R. Ye et al, "Doping dependence of the electronic structure in phosphorus-doped ferropnictide superconductor $BaFe_2(As_{1-x}P_x)_2$ studied by angle-resolved photoemission spectroscopy," Phys. Rev. B, vol. 86, pp. 035136, 2012.   DOI
10 N. Xu et al, "Angle-resolved photoemission observation of isotropic superconducting gaps in isovalent Ru-substituted $Ba(Fe_{0.75}Ru_{0.25})_2As_2$," Phys. Rev. B, vol. 87, pp. 094513, 2013.   DOI
11 H. Miao et al, "Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors," Phys. Rev. B, vol. 89, pp. 220503, 2014.   DOI   ScienceOn
12 S. V. Borisenko et al, "One-Sign Order Parameter in Iron Based Superconductor," Symmetry, vol. 4, pp. 251, 2012.   DOI
13 H. Miao et al, "Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in $FeTe_{0.55}Se_{0.45}$," Phys. Rev. B, vol. 85, pp. 094506, 2012.   DOI
14 K. Terashima et al, "Fermi surface nesting induced strong pairing in iron-based superconductors," Proc. Natl. Acad. Sci., vol. 106, pp. 7330, 2009.   DOI   ScienceOn
15 Y. B. Huang et al, "Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors," Am. Ist. Phys. Adv., vol. 2, pp. 041409, 2012.
16 T. Shimojima et al ,"Orbital Independent Superconducting Gaps in Iron Pnictides," Science, vol. 332, pp.564, 2011.   DOI   ScienceOn
17 K. Umezawa et al, "Unconventional Anisotropic s-Wave Superconducting Gaps of the LiFeAs Iron-Pnictide Superconductor," Phys. Rev. Lett., vol. 108, pp. 037002, 2012.   DOI
18 M. M. Qazilbash et al, "Electronic correlations in the iron pnictides," Nat. Phys., vol. 5, pp. 647, 2009.   DOI
19 K. Seo et al, "Pairing symmetry in a two-orbital exchange coupling model of oxypnictides," Phys. Rev. Lett., vol. 101, pp. 206404, 2008.   DOI   ScienceOn
20 F. Ma et al,"Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO," Phys. Rev. B, vol. 78, pp. 224517, 2008   DOI   ScienceOn
21 H. Kontani et al, "Orbital fluctuation theory in iron-based superconductors: s++-wave superconductivity, structure transition , and impurity-induced nematic order," Sol. Stat. Comm., vol. 152, pp. 718, 2012.   DOI   ScienceOn
22 J. Zhao et al, "Structural and magnetic phase diagram of $CeFeAsO_{1-x}F_x$ and its relation to high-temperature superconductivity," Nat. Mater., vol. 7, pp. 953, 2008.   DOI   ScienceOn
23 http://www.physics.berkeley.edu/research/lanzara/research/pnictide.html
24 H. Kontani et al, "Origin of orthombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: Analysis based on the orbital fluctuations theory," Phys. Rev. B, vol. 84, pp. 024528, 2011.   DOI   ScienceOn
25 T. Saito et al, "Orbital fluctuation theory in iron pnictides: Effects of As-Fe-As bond angle, isotope substitution, and $Z_2$ orbital pocket on superconductivity," Phys. Rev. B, vol. 82, pp. 144510, 2010.   DOI   ScienceOn
26 S. Kasahara et al, "Electronic nematicity above the structural and superconducting transition in $BaFe_2(As_{1-x}P_x)_2$," Nature, vol. 486, pp. 7403, 2012.
27 Kazuhiko Kuroki et al, "Pnictogen height as a possible switch between high-$T_c$ nodeless and low-$T_c$ nodal pairings in the iron-based superconductors," Phys. Rev. B, vol. 79, pp. 224511, 2009.   DOI   ScienceOn
28 C.-H. Lee et al, "Effect of Structural Parameters on Superconductivity in Fluorine-Free $Ba(Fe_{1-x}Co_x)_2As_2$ (Ln=La, Nd)," J. Phys. Soc. Jpn., vol. 77, pp. 083704, 2008.   DOI   ScienceOn
29 Y Mizuguchi et al, "Anion height dependence of $T_c$ for the Fe-based superconductor," Superconductor Science and Technology, vol. 23, pp. 05401, 2010.
30 W. Lv et al, "Orbital ordering and unfrustrated (${\pi}$,0) magnetism from degenerate double exchange in the iron pnictides," Phys. Rev. B, vol. 82, pp. 045125, 2010.   DOI   ScienceOn
31 K. Suzuki et al, "Spin fluctuations and unconventional pairing in $KFe_2As_2$," Phys. Rev. B, vol. 84, pp. 144514, 2011.   DOI
32 Ch. Platt et al, "Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors," Phys. Rev. B, vol. 85, pp. 180502, 2012.   DOI
33 S. Graser et al, "Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides," New J. Phys, vol. 11, pp. 025016, 2009.   DOI   ScienceOn
34 S. Maiti et al , "Evolution of the superconducting state of Fe-based compounds with doping," Phys. Rev. Lett., vol. 107, pp. 147002, 2011.   DOI
35 R. Fernades et al, "Suppression of superconductivity by Neel type magnetic fluctuations in the iron pnictides," Phys. Rev. Lett., vol. 110, pp. 117004, 2013.   DOI
36 T. Sato et al, "Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor $La(O_{1-x}F_x)FeAs$," J. Phys. Soc. Jpn., vol. 77, pp. 063708, 2008.   DOI   ScienceOn
37 M. J. Eom et al, "Evolution of transport properties of $BaFe_{2-x}Ru_xAs_2$ in a wide range of isovalent Ru substitution," Phys. Rev. B, vol. 85, pp. 024536, 2012.   DOI
38 K. Kirshenbaum et al, "Universal pair-breaking in transition-metal-substituted iron-pnictide superconductors," Phys. Rev. B, vol. 86, pp. 14505, 2012.   DOI
39 A. S. Sefat et al, "Superconductivity at 22K in Co-Doped $BaFe_2As_2$ Crystals," Phys. Rev. Lett., vol. 101, pp. 117004, 2008.   DOI   ScienceOn
40 H. Ikeda et al., "Pseudogap and Superconductivity in Iron-Based Layered Superconductor Studied by Flucutation-Exchange Approximation," J. Phys. Soc. Jpn., vol. 77, pp. 123707, 2008.   DOI   ScienceOn
41 T. Shimojima et al, "Pseudogap formation above the superconducting dome in iron pnictides," Phys. Rev. B, vol. 89, pp. 045101, 2014.   DOI
42 Y. Ishida et al, "Unusual Pseudogap Features Observed in Iron Oxypnictide Superconductors," J. Phys. Soc. Jpn., vol. 77, pp. 61, 2008.
43 K. Ahilan et al, "$F^{19}$ NMR investigation of the iron pnictide superconductor $LaFeAsO_{0.89}F_{0.11}$," Phys. Rev. B, vol. 78, pp. 100501, 2008.   DOI   ScienceOn
44 D. R. Garcia et al, "Core-level and valence-band study using angle-integrated photoemission on $LaFeAsO_{0.9}F_{0.1}$," Phys. Rev. B, vol. 78, pp. 245119, 2008.   DOI   ScienceOn
45 M. Yi et al, "Electronic structure of the $BaFe_2As_2$ family of iron-pnictide superconductors," Phys. Rev. B, vol. 80, pp. 024515, 2009.   DOI   ScienceOn
46 T. Kondo et al, "Momentum Dependence of the Superconducting Gap in $NdFeAsO_{0.9}F_{0.1}$ Single Crystals Measured by Angle Resolved Photoemission Spectroscopy," Phys. Rev. Lett., vol. 101, pp. 147003, 2008.   DOI   ScienceOn
47 N. Xu et al, "Effects of Ru substitution on electron correlations and Fermi-surface dimensionality," Phys. Rev. B, vol. 86, pp. 064505, 2012.   DOI
48 F. Bondino et al, "Evidence for Strong Itinerant Spin Fluctuations in the Normal State of $CeFeAsO_{0.89}F_{0.11}$ Iron-Oxypnictide Superconductors," Phys. Rev. Lett., vol. 101, pp. 267001, 2008.   DOI   ScienceOn
49 W. Malaeb et al, "Abrupt change in the energy gap of superconducting $Ba_{1-x}K_xFe_2As_2$ single crystals with hole doping," Phys. Rev. B, vol. 86, pp. 165117, 2012.   DOI
50 Z. R. Ye et al, "Orbital selective correlations between nesting/scattering/Lifshitz transition and the superconductivity in $AFe_{1-x}Co_xAs$(A=Li, Na)," arXiv 1303.0682v1.
51 T. Qian et al, "Absence of holelike Fermi surface in superconducting $K_{0.8}Fe_{1.7}Se_2$ revealed by ARPES," Phys. Rev. Lett., vol. 106, pp. 187001, 2011.   DOI   ScienceOn
52 Y. Zhang et al, "Nodeless superconducting gap in $A_xFe_2Se_2$(A=K, Cs) revealed angle-resolved photoemission spectroscopy," Nat. Mater., vol. 10, pp. 2981, 2011.
53 Y. Zhang et al, "Heavily electron-doped electronic structure and isotropic superconducting gap in $A_xFe_2Se_2$ (A=K, Cs)," Nat. Mater., vol. 10, pp. 273, 2011.   DOI   ScienceOn
54 K. Nakamura et al, "Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO," J. Phys. Soc. Jpn., vol. 77, pp. 093711, 2008.   DOI   ScienceOn
55 D. Mou et al, "Distinct Fermi surface topology and nodelss superconducting gap in a $(Tl_{0.58}Rb_{0.42})Fe_{1.72}Se_2$ superconductor," Phys. Rev. Lett., vol. 106, pp. 107001, 2011.   DOI   ScienceOn
56 Z. P. Yin et al, "Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides," Nat. Mater., vol. 10, pp. 932, 2011.   DOI   ScienceOn
57 T. Terashima et al., "Fermi surface and mass enhancement in $KFe_2As_2$ from de Haas-Van Alphen effect measurements," J. Phys. Soc. Jpn., vol. 79, pp. 053702, 2010.   DOI   ScienceOn
58 D. S. Inosov et al, "Crossover from weak to strong pairing in unconventional superconductors," Phys. Rev. B, vol. 83, pp. 213520, 2011.
59 C. He et al, "Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy," Phys. Rev. Lett., vol. 105, pp. 117002, 2010.   DOI   ScienceOn
60 A. Nicholson et al., "Role of degeneracy, hybridization, and nesting in the properties of multi-orbital systems," Phys. Rev. B, vol. 84, pp. 094519, 2011.   DOI   ScienceOn
61 M. Y. Wang et al, "Spin waves and magnetic exchange interactions in insulating $Rb_{0.89}Fe_{1.58}Se_2$," Nat. Comm., vol. 2, pp. 580, 2011.   DOI   ScienceOn
62 M. S. Liu et al, " Nature of magnetic excitations in superconducting $BaFe_{1.9}Ni_{0.1}As_2$." Nat. Phys., vol. 8, pp. 376, 2012.   DOI
63 S. Y. Tan. et al, "Interface-induced superconductivity and strain-dependent spin density wave in FeSe/$SrTiO_3$ thin films," Nat. Mater., vol. 12, pp. 634, 2013.   DOI   ScienceOn
64 F. Zheng et al, "Antiferromagnetic FeSe monolayer on $SrTiO_3$: The charge doping and electric field effects," Scientific Reports, vol. 3, pp. 2213, 2013.   DOI
65 Q.-Y. Wang et al, "Interface-induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on $SrTiO_3$," Chin. Phys. Lett., vol. 29, pp. 037402, 2012.   DOI   ScienceOn
66 S.-L He et al, "Phase diagram and high temperature superconductivity at 65K in tuning carrier concentration of single-layer FeSe films," Nat. Mater., vol. 12, pp. 605, 2013.   DOI   ScienceOn
67 Y. Y. Xiang et al, "High-temperature superconductivity at the FeSe/$SrTiO_3$ interface," Phys. Rev. B, vol. 86, pp. 134508, 2012.   DOI
68 Y. C. Wen et al, "Gap Opening and Orbital Modification of Superconducting FeSe above the Structural Distortion," Phys. Rev. Lett., vol. 108, pp. 267002, 2012.   DOI
69 T. Mertelj et al, "Distinct Pseudogap and Quasiparticle Relaxation Dynamics in the Superconducting State of Nearly Optimally Doped $SmFeAsO_{0.8}F_{0.2}$ Single Crystals," Phys. Rev. Lett., vol. 102, pp. 117002, 2009.   DOI   ScienceOn
70 R. A. Ewings et al, "Itinerant spin excitations in $SrFe_2As_2$ measured by inelastic neutron scattering," Phys. Rev. B, vol. 83, pp. 214519, 2011.   DOI   ScienceOn
71 K. Okazaki et al, "Octet-Line Node Structure of Superconducting Order Parameter in $KFe_2As_2$," Science, vol. 337, pp. 1314, 2012.   DOI   ScienceOn
72 Y. Zhang et al, "Nodal superconducting-gap structure in ferropnictide superconductor $BaFe_2(As_{0.7}P_{0.3})_2$," Nat. Phys., vol. 8, pp. 2248, 2012.
73 S. O. Diallo et al, "Itinerant magnetic excitations in antiferromagnetic $CaFe_2As_2$," Phys. Rev. Lett., vol. 102, pp. 187206, 2009.   DOI   ScienceOn
74 J. Zho et al. "Spin waves and magnetic exchange interaction in $CaFe_2As_2$," Nat. Phys., vol. 5, pp. 555, 2011.
75 L. W Harriger et al, "Nematic spin fluid in the tetragonal phase of $BaFe_2As_2$," Phys. Rev. B, vol. 84, pp. 054544, 2011.   DOI   ScienceOn
76 H. Chen et al, "Coexistence of the spin-density wave and superconductivity in $Ba_{1-x}K_xFe_2As_2$," Euro. Phys. Lett., vol. 85, pp. 17006, 2009.   DOI   ScienceOn
77 D. K. Pratt et al, "Coexistence of competing Antiferromagnetic and Superconducting Phases in the Underdoped $Ba(Fe_{0.953}Co_{0.047})_2As_2$ Compound Using X-ray and Neutron Scattering Techniques," Phys. Rev. Lett., vol. 103, pp. 087001, 2009.   DOI   ScienceOn
78 S. Kasahara et al, "Evolution from non-Fermi to Fermi-liquid transport via isovalent doping in $BaFe_2(As_{1-x}P_x)_2$ superconductors," Phys. Rev. B, vol. 82, pp. 184519, 2010.   DOI   ScienceOn
79 H. Gretarsson et al, "Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy," Phys. Rev. B, vol. 84, pp. 100509, 2011.   DOI   ScienceOn
80 H. Park et al., "Magnetic excitation spectra in $BaFe_2As_2$: A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method," Phys. Rev. Lett., vol. 107, pp. 137007, 2011.   DOI   ScienceOn
81 L. X. Yang et al, "Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy," Phys. Rev. B, vol. 82, pp. 104519, 2010.   DOI   ScienceOn
82 S. V. Borisenko et al, "Superconductivity without Nesting in LiFeAs," Phys. Rev. Lett., vol. 105, pp. 067002, 2010.   DOI   ScienceOn
83 A. Damascelli ,"Probing the Electronic Structure of complex systems by ARPES," Physica Scripta., T109, 2004.
84 M.M. Korshunov et al, "Theory of magnetic excitations in iron-based layered superconductors," Phys. Rev. B, vol. 78, pp. 140509 2008.   DOI   ScienceOn
85 A. V. Chubukov, "Pairing mechanism in Fe-based superconductors," Annu Rev. Condens. Mat. Phys., vol. 3, pp. 57, 2012.   DOI
86 F. Wang et al ,"The electron-pairing mechanism of iron-based superconductors," Science, vol. 332, pp. 200, 2011.   DOI   ScienceOn
87 Q. Si et al, "Strong correlations and magnetic frustration in the high $T_c$ iron pnictides," Phys. Rev. Lett., vol. 101, pp. 076501, 2008.
88 Q. Si et al," Correlation effects in the iron pnictides," New J. Phys., vol. 11, pp. 045001, 2009.   DOI   ScienceOn
89 M. Yoshizawa et al, "Anomalous elastic behavior and its correation with superconductivity in iron-based superconductor $Ba(Fe_{1-x}Co_x)_2As_2$," Mod. Phys. Lett. B, vol. 26, pp. 1230011, 2012.
90 M. Daghofer et al, "Orbital-weight redistribution triggered by spin order in the pnictides," Phys. Rev. B, vol. 81, pp. 180514, 2010.   DOI   ScienceOn
91 D. Liu et al, "Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor," Nat. Comm., vol. 3, pp. 1946, 2012.
92 M. Yi et al, "Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs," New J. Phys., vol. 14, pp. 073019, 2012   DOI   ScienceOn
93 W.-G. Yin et al, "Unified picture for magnetic correlations in iron-based superconductors," Phys. Rev. Lett., vol. 105, pp. 107004, 2010.   DOI   ScienceOn
94 R. Fernades et al, "Preemptive nematic order, pseudogap, and orbital order in the iron pnictides," Phys. Rev. B, vol. 85, pp. 024534, 2012.   DOI
95 M. Yi et al, "Symmetry breaking orbital anisotropy observed for detwinned $Ba(Fe_{1-x}Co_x)_2As_2$ above the spin density wave transition," Proc. Natl. Acad. Sci., vol. 108, pp. 6878, 2011.   DOI   ScienceOn
96 Y. Zhang et al, "Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs," Phys. Rev. B, vol. 85, pp. 085121, 2012.   DOI
97 J. Paglione et al, "High-temperature superconductivity in iron-based mateirals," Nat. Phys., vol. 6, pp. 1759, 2010.
98 Ch. Platt et al, "Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors," Phys. Rev. B, vol. 85, pp. 180502, 2012.   DOI
99 W. C. Lee et al, "Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors," Phys. Rev. Lett., vol. 102, pp. 217002, 2009.   DOI   ScienceOn
100 V. Stanev et al, "Three-band superconductivity and the order parameter that breaks time-reversal symmetry," Phys. Rev. B, vol. 81, pp. 134522, 2010.   DOI   ScienceOn
101 P. Dai et al, "Magnetism and its microscopic origin in iron-based high temperature superconductors," Nat. Phys., vol. 8, pp. 709, 2012.   DOI
102 S. Liang et al, "Nematic state of Pnictides Stabilized by interplay between Spin, Orbital and Lattice Degreeds of Freedom," Phys. Rev. Lett., vol. 111, pp. 047004, 2013.   DOI
103 P. J. Hirschfeld et al, "Gap symmetry and structure of Fe-based superconductors," Rep. Prog. Phys., vol. 74, pp. 124508, 2011.   DOI   ScienceOn
104 I. I. Mazin et al, "Unconventional Superconductivity with a sign Reversal in the Order Parameter of $LaFeAsO_{1-x}F_x$," Phys. Rev. Lett., vol. 101, pp. 057003, 2008.   DOI   ScienceOn
105 F. F. Tafti et al, "Sudden reversal in the pressure dependence of $T_c$ in the iron-based superconductor $KFe_2As_2$," Nat. Phys., vol. 9, pp. 349, 2013.   DOI
106 Y. Ono et al, "Structural transition, ferro-orbital order and its fluctuation-mediated S++-wave superconductivity in iron pnictides," Sol. Stat. Comm., vol. 152, pp. 701, 2012.   DOI   ScienceOn
107 H. Ding et al, "Observation of Fermi-surface-dependent nodeless superconducting gaps in $Ba_{0.6}K_{0.4}Fe_2As_2$," Eur. Phys. Lett., vol. 83, pp. 47001, 2008.   DOI   ScienceOn
108 S. V. Borisenko et al, "Superconductivity without nesting in LiFeAs," Phys. Rev. Lett., vol. 105, pp. 067002, 2010.   DOI   ScienceOn
109 I. I. Mazin et al, "Superconductivity gets an iron boost," Nature, vol. 464, pp. 183, 2010.   DOI   ScienceOn
110 R. Thomale et al, "Exotic d-Wave Superconducting state of Strongly Hole-Doped $KxBa_{1-x}Fe_2As_2$," Phys. Rev. Lett., vol. 107, pp. 117001, 2011.   DOI
111 J. Dai et al, "Iron pnictides as a new setting for quantum criticality," Proc. Natl. Acad. Sci., vol. 106, pp. 4118, 2009.   DOI   ScienceOn