Browse > Article

Superconducting Strip Ion Detectors for Time-of-flight Mass Spectrometer  

Zen, N. (National Institute of Advanced Industrial Science and Technology (AIST))
Suzuki, K. (National Institute of Advanced Industrial Science and Technology (AIST))
Shiki, S. (National Institute of Advanced Industrial Science and Technology (AIST))
Ukibe, M. (National Institute of Advanced Industrial Science and Technology (AIST))
Koike, M. (National Institute of Advanced Industrial Science and Technology (AIST))
Casaburi, A. (The National Research Council (CNR))
Ejrnaes, M. (The National Research Council (CNR))
Cristiano, R. (The National Research Council (CNR))
Ohkubo, M. (National Institute of Advanced Industrial Science and Technology (AIST))
Publication Information
Abstract
Superconducting detectors are promising as ion detectors for time-of-flight mass spectrometers (TOF MS). They can achieve mass-independent detection efficiency even for macromolecular bombardments, because output signals are produced through the deposited kinetic energy at ion impact instead of secondary electron emission that is the ion detection mechanism of conventional microchannel plate (MCP) detectors or secondary electron multipliers (SEM). Among the superconducting detectors, the superconducting strip ion detectors (SSIDs), which consist of several hundreds of superconducting lines with a width of a few hundreds nm and a thickness of a few tens of nm, have a fast response time of less than 1 ns. Inherently, the response time of SSIDs is determined by kinetic inductance, so that it was difficult to realize a fast SSID with a large detection area. However, we succeeded in realizing the detector size up to $5{\times}5mm^2$ without response time degradation by using a parallel configuration.
Keywords
TOF MS; biomolecule; stripline; SSID;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Gilmore and M. Seah, Int. J. Mass Spectrom., "Ion detection efficiency in SIMS:: Dependencies on energy, mass and composition for microchannel plates used in mass spectrometry", 202, 217-229 (2000).   DOI   ScienceOn
2 G. Westmacott, M. Frank, SE. Labov, and WH. Benner, "Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions", Rapid Commun. Mass Spectrom., 14, 1854-1861 (2000).   DOI   ScienceOn
3 K. Suzuki, S. Shiki, M. Ukibe, M. Koike, S. Miki, Z. Wang, and M. Ohkubo, "Hot-Spot Detection Model in Superconducting Nano-Stripline Detector for keV Ions", Appl. Phys. Express, 4, 083101 (2011).   DOI   ScienceOn
4 R. Cristiano, A. Casaburi, E. Esposito, M. Ejrnaes, S. Pagano, K. Suzuki, N. Zen, and M. Ohkubo, "Parallel Superconducting Strip-Line Detectors for Time-offlight Mass Spectrometry", J. Low Temp. Phys., 167, 979-984 (2012).   DOI   ScienceOn
5 A. Casaburi, M. Ejrnaes, N. Zen, M. Ohkubo, S. Pagano, and R. Cristiano, "Thicker, more efficient superconducting strip-line detectors for high throughput macromolecules analysis", Appl. Phys. Lett., 98, 023702 (2011).   DOI   ScienceOn
6 N. Zen, A. Casaburi, S. Shiki, K. Suzuki, M. Ejrnaes, R. Cristiano, and M. Ohkubo, "1 mm ultrafast superconducting stripline molecule detector", 95, 172508 (2009).   DOI   ScienceOn
7 A. Casaburi, N. Zen, K. Suzuki, M. Ejrnaes, S. Pagano, R. Cristiano, and M. Ohkubo, "Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions", Appl. Phys. Lett., 94, 212502 (2009).   DOI   ScienceOn
8 S. Shiki, M. Ukibe, R. Maeda, M. Ohkubo, Y. Sato, and S. Tomita, "Energy resolution improvement of superconducting tunnel junction particle detectors with infrared-blocking filters", Nucl. Instr. Meth. Phys. Res. A, 595, 391-394 (2008).   DOI   ScienceOn
9 D. K. Liu, S. J. Chen, L. X. You, Y. L. Wang, S. Miki, Z. Wang, X. M. Xie, and M. H. Jiang, "Nonlatching Superconducting Nanowire Single-Photon Detection with Quasi-Constant-Voltage Bias", Appl. Phys. Express, 5, 125202 (2012).   DOI   ScienceOn
10 M. Tarkhov, J. Claudon, J. Ph. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol'tsman, "Ultrafast reset time of superconducting single photon detectors", Appl. Phys. Lett., 92, 241112 (2008).   DOI   ScienceOn
11 A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters", Appl. Phys. Lett., 88, 111116 (2006).   DOI   ScienceOn
12 F. Marsili, F. Bellei, F. Najafi, A. Dane, E. A. Dauler, R. J. Molnar, and K. Berggren, "Efficient Single Photon Detection from 500 nm to $5{\mu}m$ Wavelength", Nano Lett., 12, 4799-4804 (2012).   DOI   ScienceOn
13 A. Engel, A. Aeschbacher, K. Inderbitzin, A. Schilling, K. Il'in, M. Hofherr, M. Siegel, A. Semenov, and H.-W. Hubers, "Tantalum nitride superconducting single-photon detectors with low cut-off energy", Appl. Phys. Lett., 100, 062601 (2012).   DOI   ScienceOn
14 B. Baek, A. E. Lita, V. Verma, and S. W. Nam, "Superconducting $a-W_xSi_{1-x}$ nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm", Appl. Phys. Lett., 98, 251105 (2011).   DOI   ScienceOn
15 S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, "Multichannel SNSPD system with high detection efficiency at telecommunication wavelength", Opt. Lett., 35, 2133 (2010).   DOI   ScienceOn
16 A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leon, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths", Nat. Photonics, 2, 302-306, (2008).   DOI   ScienceOn
17 M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol'tsman, "A cascade switching superconducting single photon detector", Appl. Phys. Lett., 91, 262509 (2007).   DOI   ScienceOn
18 G. Fraser, "The ion detection efficiency of microchannel plates (MCPs)", Int. J. Mass Spectrom., 215, 13-30 (2002).   DOI   ScienceOn