Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2015.13.2.123

Optimization of Radiostrontium Separation Process Using Sr Resin  

Jung, Yoonhee (Korea University of Science and Technology)
Kim, Hyuncheol (Korea Atomic Energy Research Institute)
Suh, Kyung Suk (Korea University of Science and Technology)
Kang, Mun Ja (Korea Atomic Energy Research Institute)
Chung, Kun Ho (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.13, no.2, 2015 , pp. 123-130 More about this Journal
Abstract
For the analysis of 90Sr, which is a pure beta emitter, radiochemical separation from the main interfering elements such as Ca, Ba and Ra is required due to their similarity in chemical behavior to strontium. This study describes a radioanalytical procedure using extraction chromatography for separating Sr from interfering elements. The maximum capacity of the resin for Sr was approximately 6 mg per 1.5 mL of bed volume (BV). The recovery of Sr on the resin 1.5 mL (BV) was quantitative for the calcium level of 200 mg at the flow rate of 1 mL min-1. However the chemical yield declined by increasing the flow rate by up to 5 mL min-1 even at the calcium level of 200 mg. When using the same BV of Sr resin, the performance of the resin was enhanced as the cross-sectional area of the Sr resin column is small.
Keywords
Radiostrontium; Sr resin; Automated radionuclide separator; Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.H. Chung, S.D. Choi, G.S. Choi, and M.J. Kang, “Design and performance of an automated radionuclide separator its application on the determination of 99Tc in groundwater”, Appl. Radiat. Isot., 81, 57-61 (2013).   DOI
2 H. Kim, K.H. Chung, Y. Jung, M. Jang, M.J. Kang, and G.S. Choi, “A rapid and efficient automated method for the sequential separation of plutonium and radiostrontium in seawater”, J. Randioanal. Nucl. Chem., 304, 321-327 (2015).   DOI
3 Sr resin Eichrom Technologies, "Sr Resin Technical Data." Eichrom. Accessed Mar. 2 2015. Available from: http://www.eichrom.com/eichrom/products/info/sr_resin.aspx.
4 S.L. Maxwell, B.K. Culligan, and R.C. Utsey, “Rapid determination of radiostrontium in seawater samples”, J. Radioanal. Nucl. Chem., 298, 867-875 (2013).   DOI
5 M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 3-A, 3 - 244 (2004).
6 J.P. Chen, “Batch and continuous adsorption of strontium by plant root tissues”, Bioresource Technol., 60(5), 185-189 (1997).   DOI
7 M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 7-A, 14 - 245 (2004).
8 R. Bojanowski and D. Knapinska-Skiba, “Determination of low level Sr-90 in environmental samples: a novel approach to the classical method”, J. Radioanal. Nucl. Chem., 138(2), 207 (1990).   DOI
9 V. Mikulaj and V. Svec, “Radiochemical analysis of Sr-90 in milk, soil and plants by solvent extraction”, J. Radionanal. Nucl. Chem., 175(4), 313 (1993).
10 G.H. Kramer and J.M. Davis, “Isolation of strontium-90, yttrium-90, promethium-147 and cerium-144 from wet ashed urine by calcium oxalate co-precipita- tion and sequential solvent extraction”, Anal, Chem., 54, 1428-1431 (1982).   DOI
11 E.P. Horwitz, M.L. Dietz, and D.E. Fisher, “Co-relation of the extraction of strontium nitrate by a crown ether with the water content of the organic phase”, Solvent Extr. Ion Exc., 8, 199-208 (1990).   DOI
12 G. Zirnhelt, M.J. Leroy, J.P. Brunette, Y. Frere, and Ph. Gramain, “Strontium extraction with a polymerbound 18-crown-6 polyether”, Sep. Sci. Technol., 16, 403 (1981).   DOI
13 M.M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, D. MacMahon, and K.B. Lee, Monographie BIPM-5: Table of Radionuclides, Bureau International des Poids et mesures., 1-A, 1 - 150 (2004).
14 A.K. De, Environmental Chemistry, 5rd ed., 212, New Age International Publishers, New Delhi (1982).
15 J. Lehto and X. Hou, Chemistry and Analysis of Radionuclides, 1 st ed., 106-114, Wiley-Vch, Weinheim, Germany (2012).
16 N. Casacuberta, P. Masque, J. Garcia-Orellana, R. Garcia-Tenorio, and K.O. Buesseler, “90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident”, Biogeosciences, 10, 3649-3659 (2013).   DOI
17 E.P. Horwitz, R. Chiarizia, and M.L. Dietz, “A Novel Strontium-Selective Extraction Chromatographic Resin”, Solvent Extr. Ion Exc., 10, 25-37 (1992).
18 E.P. Horwitz, M.L. Dietz, R. Chaiarizia, H. Diamond, S.L. Maxwell, and M.R. Nelson, “Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions”, Anal. Chim. Acta., 301(1), 63-78 (1995).   DOI
19 J. Mellado, M. Liaurado, and G. Rauret, “Determination of Pu, Am, U, Th and Sr in marine sediment by extraction chromatography”, Anal. Chim. Acta., 443(1), 81-90 (2001).   DOI