The term "hangover" refers to symptoms such as headache, heartburn, nausea, and dizziness caused by acetaldehyde created through alcohol decomposition in the body after alcohol intake. Many scientists have conducted research on diverse drugs, foods, and medicinal herbs aimed at eliminating hangovers. However, research on metabolism to objectively verify or measure their effects on hangover symptoms has been lacking. Accordingly, in this study, deep sea water minerals were administered orally at varying concentrations to rats that consumed alcohol, and changes in the levels of amino acids in their bodies were measured using nuclear magnetic resonance spectroscopy to gauge the minerals' effects on hangover symptoms. Thus far, biochemical research on hangover cures has been confined to basic research measuring changes in the levels of alcohol dehydrogenase and acetaldehyde dehydrogenase as well as in the concentrations of ethanol, acetaldehyde, and acetate using spectroscopes such as enzyme-linked immunosorbent assay kits or gas chromatography-mass spectrometers. In comparison, this study presents pharmacokinetic research that simultaneously tracked biomaterials including amino acids and organic acids, metabolites associated with hangover, to clarify hangover mechanisms more specifically. In addition, this study examined hangover mechanisms without an external supply of tracked materials not overlapping with alcohol metabolism-related materials, such as external amino acids and sugars.