본 논문은 역행 통로(backward path)를 가진 수정된 Neocognitron 을 한글 음절 인식을 위해 적용한 결과에 관한 것이다. Fukushima의 논문에서 Neocognitron이 $19{\times}19$ 크기의 필기체 숫자를 인식할 수있다고 논술하였다. 본 논문에서는 스캐너 또는 마우스를 이용하여 필기체 한글 문자 또는 그 일부의 $61{\times}61$ 영상을 입력하였다. 수정된 Neocognitron은 3쌍의 Us, Uc층으로 구성되어있다. 본 신경회로망에서 마지막 인식층인 Uc층은 $5{\times}5$ 크기의 세포로 된 24개의 명(plane)으로 구성되어 있는데, 각각의 세포들은 동시에 주의력(attention)을 받아들이느 자소(grapheme)의 존재와 입력층에서의 상대적 위치를 구별할 수 있다. 본 신경회로망은 10개의 단모음 자소, 14개의 단자음 자소와 그들의 공간적 특징을 가지고 학습시켰다. 쉽게 학습되지 않는 패턴들은 여러번 학습시켰다. 왜곡, 잡음, 크기변화, 변형, 회전 등을 갖는 개개의 자소를 분류할 수 있도록 학습된 신경망을 한글 음절의 인식을 위해 사용하였으며, 음절자내의 영상 분할 작업을 위해 선택적 주의력 기법을 사용하였다. 입력문자에 대한 초기 표본 실험에서 본 모형은 필기체 한글 음절자의 시험패턴중 79%를 정확하게 인식하였다. 이 연구결과는 Neocognitron이 입력 영상을 인식가능한 부분으로 분할함으로써 큰크기의 분자 집합을 갖는 필기체 문자를 인식할수 있는 강력한 모형임을 시사해준다. 똑같은 접근 방법이 구조나 자소가 아주 복잡한 한자의 인식에도 적용될 수 있다고 본다. 그러나, 모의실험에서 처리시간에 있어 매우 심한 병목현상을 보여 주었다. 모형의 실질적인 사용을 위해서는 신경칩으로서의 구현이 선결되어야 할 것이다. 또, 복모음, 복자음으로 구성된 한글 음절자 인식을 위하여 모형에 대한 더 깊은 연구가 수행되어질 필요가 있다. 두개의 단자모사이의 이웃지역을 정확히 인식하는 것은 이렇나 작업을 위해 매우 중요한 일이 될 것이다.