DOI QR코드

DOI QR Code

Comparison of Root-Zone Temperature, Growth and Yield of Arugula (Eruca sativa L), Coriander (Coriandrum sativum L.), Basil (Ocimum basilicum L.), and Water Spinach (Ipomoea aquatica Forsk.) Cultivated with Aeroponic System under Different Nutrient Solution Heating Temperatures during Low Temperature Season

저온기 루꼴라, 고수, 바질, 공심채 분무경 재배 시 양액 가온 온도에 따른 근권부 온도 변화와 생육 및 수량 비교

  • Se Jin Kim (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Mi Young Lim (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Gyeong Lee Choi (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Mi Young Roh (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Dongpil Kim (Department of Horticultural Science, College of Agriculture and Life Science, Chungnam National University)
  • 김세진 (국립원예특작과학원 시설원예연구소) ;
  • 임미영 (국립원예특작과학원 시설원예연구소) ;
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 노미영 (국립원예특작과학원 시설원예연구소) ;
  • 김동필 (충남대학교 원예학과)
  • Received : 2025.04.23
  • Accepted : 2025.06.04
  • Published : 2025.07.31

Abstract

During low temperature season, the growth and yield of leafy vegetables can decline due to low temperature and lack of sunlight. Cold stress can be alleviated and the growth and yield of crop can be improved by heating root-zone temperature. The recent increase in demand for aromatic leafy vegetables-including arugula (Eruca sativa L.), coriander (Coriandrum sativum L.), basil (Ocimum basilicum L.), and water spinach (Ipomoea aquatica Forsk.) - emphasized the need for year-round production. This study was conducted to investigate the effects of nutrient solution heating on root-zone temperature control, as well as its impact on shoot growth and yield. This experiment was conducted in a glass greenhouse located in Haman, Gyeongnam, Korea during low temperature season. Seedlings of four aromatic leafy vegetables were transplanted onto aeroponics bed and treatments were set for heating nutrient solution at three different temperatures -20℃(NSH20), 25℃(NSH25), 30℃(NSH30). The nutrition solution followed PBG composition for leaf vegetables and was continuously recirculated without discharge. Ionic concentrations and properties of the nutrient solution were investigated every three days, and growth and harvest measurements were taken at two and four weeks after transplanting. During the cultivation period, mean of minimum, mean, and maximum temperature per day inside the greenhouse were 13.75℃, 18.66℃, and 30.08℃, respectively. The lowest temperature was recorded at 9.97℃. In the control, the mean of root-zone temperature was 17.17℃ and the lowest of root-zone temperature was 13.35℃, which could potentially prevent root development and reduce shoot growth due to cold stress. The average root-zone temperatures were 24.61℃ in NSH30, 21.41℃ in NSH25, and 18.62℃ in NSH20. No significant differences in growth and yield were observed in cool-season grown vegetables, arugula and coriander, across the four different root-zone temperatures. In contrast, for warm-season grown vegetables, basil and water spinach, showed improved growth and yield with increasing root-zone temperature. Basil showed similar improvements at 25℃ and 30℃, indicating that 25℃ is sufficient and more energy-efficient. Water spinach showed a 107% yield increase in NSH30 compared to the control, and a 60% increase compared to NSH25, suggesting that maintaining a higher root-zone temperature is more suitable for maximizing its productivity. These findings demonstrate the importance of crop-specific root-zone temperature management in aeroponics during low temperature seasons.

저온기 엽채류 생산시 저온, 저광 등으로 인해 생육 저하 및 수량 감소가 발생한다. 저온기 근권부 가온을 통해 지상부 저온 스트레스를 경감하고 생육 및 수량을 개선할 수 있다. 최근 루꼴라, 고수, 바질, 공심채 등 향신채소의 국내 수요가 증가하면서, 연중 생산의 필요성이 증가하고 있다. 본 연구에서는 양액 가온을 통한 근권부 온도 제어 효과와 지상부 생육 및 수량에 미치는 영향을 구명하고자 수행하였다. 저온기 경남 함안에 위치한 유리 온실에서 실험을 실시하였으며, 루꼴라, 고수, 바질, 공심채를 분무경베드에 정식하여 무처리 대조구와 양액 가온 설정온도별 처리구(NSH20, NSH25, NSH30)를 설정하였다. 양액 조성은 PBG 엽채류 조성을 따랐으며 재배기간 동안 폐기 없이 표준 양액(EC 1.8, pH 5.5)으로 보충하여 사용하였다. 양액의 특성 및 이온 농도는 약 3일 간격으로 분석하였으며, 작물의 생육 및 수확 조사는 각각 정식후 2주와 4주차에 수행하였다. 재배 기간 동안 온실 내부의 일일 최저, 평균, 최고 온도는 각각 13.75℃, 18.66℃, 30.08℃였으며, 재배 기간 중 온실 내 최저 온도는 9.97℃였다. 대조구의 근권부 온도는 최저 13.35℃, 평균17.17℃로 근권부 저온으로 인한 뿌리 생육 저하, 지상부 생육 감소를 유발할 수 있다. 설정 온도별 가온 양액을 공급한 경우 근권부 평균 온도는 NSH30는 24.61℃, NSH25는 21.41℃, NSH20는 18.62℃였다. 호냉성 작목인 루꼴라와 고수는 근권부 온도에 따른 생육 및 수량 변화가 확인되지 않았다. 반면 호온성 작목인 바질과 공심채는 양액 가온을 통한 근권부 온도 제어시 생육 및 수량 개선이 확인되었다. 바질은 NSH25와 NSH30 처리구에서 유사한 생육 및 수량 개선 효과가 확인되었으며, 에너지 효율성을 고려했을 때 양액 가온 온도를 25℃로 설정하는 것이 더 경제적인 근권부 온도 관리 방안이 될 것으로 생각된다. 반면 공심채는 NSH30에서 수량이 대조구 대비 107%, NSH25 대비 60% 증가한 것으로 보아 양액 가온 설정 온도를 높게 유지하는 것이 적합할 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호: PJ01735702)의 지원에 의해 이루어진 것임.

References

  1. Ahn Y.H. S.W. Noh, S.J. Kim, and J.S. Park 2022, Selection of appropriate nutrient solution for simultaneous hydroponics of three leafy vegetables (Brassicaceae). Korean J Agric Sci 49:643-653. (in Korean) doi:10.7744/kjoas.20220058
  2. Arkin G.F., and H.M. Taylor 1981, Modifying the root environment to reduce crop stress. St. Joseph, Michigan: American Society of Agricultural Engineers.
  3. Chang X., P. Alderson, and C. Wright 2005, Effect of temperature integration on the growth and volatile oil content of basil (Ocimum Basilicum L.). J Hortic Sci Biotechnol 80: 593-598. doi:10.1080/14620316.2005.11511983
  4. Choi K.Y., E.T. Yang, D.K. Park, Y.C. Kim, T.C. Seo, H.K. Yun, and H.D. Seo 2005, Development of nutrient solution for hydroponics of cruciferae leaf vegetables based on nutrient-water absortion rate and cation ratio. J Bio-Env Con 14:289-297. (in Korea)
  5. Dolezaloval I., M. Duchoslav, and K. Dusek 2013, Biology and Yield of Rocket (Eruca sativa Mill.) under Field Conditions of the Czech Republic (Central Europe). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41, 530-537. https://doi.org/10.15835/nbha4129281
  6. Gent M.P.N. 2014, Effect of temperature on composition of hydroponic lettuce. XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on High Value Vegetables, Root and Tuber Crops, and Edible Fungi Production, Supply and Demands.
  7. Gosselin A., and M. J. Trudel 1984, Interactions between rootzone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar 'Vender'. Sci Hortic 23:313-321. https://doi.org/10.1016/0304-4238(84)90027-X
  8. Hayashi S., C.P. Levine, W. Yu, M. Usui, A. Yukawa, Y. Ohmori, M. Kusano, M. Kobayashi, T. Nishizawa, I. Kurimoto, S. Kawabata, and W. Yamori 2024, Raising root zone temperature improves plant productivity and metabolites in hydroponic lettuce production. Front Plant Sci 15:1352331. doi:10.3389/fpls.2024.1352331
  9. He J., X.E. See, L. Qin, and T.W. Choong 2016, Effects of root-zone temperature on photosynthesis, productivity and nutritional quality of aeroponically grown salad rocket (Eruca sativa) vegetable. Am J Plant Sci 7: 1993-2005. doi:10.4236/ajps.2016.714181
  10. He J., and S. K. Lee 1998, Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different rootzone temperatures and growth irradiances under tropical aerial condition. J Hortic Sci Biotechnol 73:173-180. doi :10.1080/14620316.1998.11510961
  11. Hooks T., L. Sun, Y. Kong, J. Masabni, and G. Niu 2022, Effect of nutrient solution cooling in summer and heating in winter on the performance of baby leafy vegetables in deep-water hydroponic systems. Horticulturae 8:749. doi:10.3390/horticulturae8080749
  12. Kawasaki Y., S. Matsuo, Y. Kanayama, and K. Kanahama 2014, Effects of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperature. J Japan Soc Hort Sci 83:295-301. doi:10.2503/jjshs1.MI-001
  13. Klock K.A., H.G. Taber, and W.R. Graves 1997, Root respiration and phosphorus nutrition of tomato plants grown at a 36℃ root-zone temperature. J Am Soc Hortic Sci 122: 175-178. doi:10.21273/JASHS.122.2.175
  14. Kwack Y, D.S. Kim, and C. Chun 2014, Root-zone cooling affects growth and development of paprika transplants grown in rockwool cubes. Hortic Environ Biotechnol 55:14-18. doi:10.1007/s13580-014-0117-3
  15. Lakhiar I.A., J. Gao, T.N. Syed, F.A. Chandio, and N.A. Buttar 2018, Modern plant cultivation technologies in agriculture under controlled environment: a review on aeroponics. J Plant Interact 13:338-352. doi:10.1080/17429145.2018.1472308
  16. Lee B.K., M.D. Pham, J.W. Shin, M. Cui, H.I. Lee, J.S. Myung, H.Y. Na, and C.H. Chun 2022, Photosynthetic changes and growth of paprika transplants as affected by root-zone cooling methods under high air temperature conditions after trans-planting. Hortic Sci 40: 672-688. doi:10.7235/HORT.20220061
  17. Levine C.P., S. Hayashi, Y. Ohmori, M. Kusano, M. Kobayashi, and T. Nishizawa 2023, Controlling root zone temperature improves plant growth and pigments in hydroponic lettuce. Ann Bot 132:455-470. doi:10.1093/aob/mcad127
  18. Miller A., P. Langenhoven, and K. Nemail 2020, Maximizing productivity of greenhouse-grown hydroponic lettuce during winter. HortScience 55:1963-1969. doi:10.21273/HORTSCI15351-20
  19. Park J.S., S.J. Kim, H.J. Kim, J.M. Choi, and G.I. Lee 2014, Photosynthetic characteristics and growth analysis of angelica gigas according to different hydroponics methods. Korean J Agric Sci 41:321-326 doi:10.7744/cnujas.2014.41.4.321
  20. Ribeiro P., and J. E. Simon 2007, Breeding sweet basil for chilling tolerance. in issues in new crops and new uses. ASHS Press, Alexandria, VA, USA, pp 302-305.
  21. Silva L. J.B., A.S.S. Cavalcante, and S.E. Araújo Neto 2009, Production of rocket (Eruca sativa) seedlings with substrates composed of organic waste. Ciênc Agrotec. 33:1301-1306. doi:10.1590/S1413-70542009000500015
  22. Sipos L., L. Balázs, G. Székely, A. Jung, S. Sárosi, P. Radácsi, and L. Csambalik 2021, Optimization of Basil (Ocimum basilicum L.) Production in LED light environments - a review. Sci Hortic 289:110486. doi:10.1016/j.scienta.2021.110486
  23. Udagawa Y., T. Ito, and K. Gomi 1991, Effects of root temperature on the absorption of water and mineral nutrients by strawberry plants 'Reiko' grown hydroponically. J Japanese Soc Hortic Sci 59:711-717. doi:10.2503/jjshs.59.711
  24. Welbaum, G.E. 2015. Vegetable Production and Practices. Chapter 1. Vegetable History, Nomenclature, and Classification. CABI, Wallingford, UK.
  25. Yadav P. 2024, Effect on Physiological Characteristic of Coriandrum Sativum L. IJESTI. 4:1-9. doi:10.31426/ijesti.2024.4.5.4311
  26. Yamori N., C.P. Levine, N. S. Mattson, and W. Yamori 2022, Optimum root zone temperature of photosynthesis and plant growth depends on air temperature in lettuce plants. Plant Mol Biol 110:385-395. doi:10.1007/s11103-022-01249-w
  27. Yin X., J. Goudriaan, E.A. Lantinga, J. Vos, and H.J. Spiertz 2003, A Flexible Sigmoid Function of Determinate Growth. Annals of Botany 91: 361-371. doi: 10.1093/aob/mcg029