DOI QR코드

DOI QR Code

Animal amino acid sensor - A review

  • Yongding Ke (School of Life Science, Jiangsu Normal University) ;
  • Xinyu Peng (School of Life Science, Jiangsu Normal University) ;
  • Chengchuang Song (School of Life Science, Jiangsu Normal University) ;
  • Xingtang Fang (School of Life Science, Jiangsu Normal University) ;
  • Yanhong Wang (School of Life Science, Jiangsu Normal University) ;
  • Chunlei Zhang (School of Life Science, Jiangsu Normal University)
  • 투고 : 2024.05.28
  • 심사 : 2024.07.30
  • 발행 : 2025.02.01

초록

Cell growth and metabolism necessitate the involvement of amino acids, which are sensed and integrated by the mammalian target of rapamycin complex 1 (mTORC1). However, the molecular mechanisms underlying amino acid sensing remain poorly understood. Research indicates that amino acids are detected by specific sensors, with the signals being relayed to mTORC1 indirectly. This paper reviews the structures and biological functions of the amino acid sensors identified thus far. Additionally, it evaluates the potential role these sensors play in the developmental changes of the livestock production.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (32072712, 32172694), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

참고문헌

  1. Layman DK, Anthony TG, Rasmussen BB, et al. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr 2015;101:1330-8. https://doi.org/10.3945/ajcn.114.084053
  2. Yan L, Mieulet V, Burgess D, et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell 2010;37:633-42. https://doi.org/10.1016/j.molcel.2010.01.031
  3. Wauson EM, Zaganjor E, Lee AY, et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol Cell 2012;47:851-62. https://doi.org/10.1016/j.molcel.2012.08.001
  4. Caron E, Ghosh S, Matsuoka Y, et al. A comprehensive map of the mTOR signaling network. Mol Syst Biol 2010;6:453. https://doi.org/10.1038/msb.2010.108
  5. Yoon MS. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients 2017;9:1176. https://doi.org/10.3390/nu9111176
  6. Rhoads JM, Niu X, Odle J, Graves LM. Role of mTOR signaling in intestinal cell migration. Am J Physiol Gastrointest Liver Physiol 2006;291:510-7. https://doi.org/10.1152/ajpgi.00189.2005
  7. Yao K, Yin YL, Chu W, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008;138:867-72. https://doi.org/10.1093/jn/138.5.867
  8. Xia J, Wang R, Zhang T, Ding J. Structural insight into the arginine-binding specificity of CASTOR1 in amino aciddependent mTORC1 signaling. Cell Discov 2016;2:16035. https://doi.org/10.1038/celldisc.2016.35
  9. Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 2016;536:229-33. https://doi.org/10.1038/nature19079
  10. Rebsamen M, Superti-Furga G. SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1. Autophagy 2016;12:1061-2. https://doi.org/10.1080/15548627.2015.1091143
  11. Wyant GA, Abu-Remaileh M, Wolfson RL, et al. mTORC1 Activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 2017;171:642-54. https://doi.org/10.1016/j.cell.2017.09.046
  12. Jung J, Genau HM, Behrends C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 2015;35:2479-94. https://doi.org/10.1128/MCB.00125-15
  13. Lee IP, Evans AK, Yang C, et al. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways. PLoS One 2014;9:109803. https://doi.org/10.1371/journal.pone.0109803
  14. Hyde R, Cwiklinski EL, MacAulay K, Taylor PM, Hundal HS. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 2007;282:19788-98. https://doi.org/10.1074/jbc.M611520200
  15. Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS. SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci (Elite Ed) 2011;3:128999. https://doi.org/10.2741/e332
  16. Shen K, Sabatini DM. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci USA 2018;115:9545-50. https://doi.org/10.1073/pnas.1811727115
  17. Huttlin EL, Ting L, Bruckner RJ, et al. The bioplex network: A systematic exploration of the human interactome. Cell 2015;162:425-40. https://doi.org/10.1016/j.cell.2015.06.043
  18. Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340:1100-6. https://doi.org/10.1126/science.1232044
  19. Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016;165:153-64. https://doi.org/10.1016/j.cell.2016.02.035
  20. Tang Y, Tan B, Li G, Li J, Ji P, Yin Y. The regulatory role of MeAIB in protein metabolism and the mtor signaling pathway in porcine enterocytes. Int J Mol Sci 2018;19:714. https://doi.org/10.3390/ijms19030714
  21. Jung JW, Macalino S, Cui M, et al. Transmembrane 4 l six family member 5 senses arginine for mTORC1 signaling. Cell Metab 2019;29:1306-19. https://doi.org/10.1016/j.cmet.2019.03.005
  22. He XD, Gong W, Zhang JN, et al. Sensing and transmitting intracellular amino acid signals through reversible lysine aminoacylations. Cell Metab 2018;27:151-66. https://doi.org/10.1016/j.cmet.2017.10.015
  23. Chantranupong L, Wolfson RL, Orozco JM, et al. The Sestrins interact with GATOR2 to negatively regulate the aminoacid-sensing pathway upstream of mTORC1. Cell Rep 2014; 9:1-8. https://doi.org/10.1016/j.celrep.2014.09.014
  24. Li XZ, Yan XH. Sensors for the mTORC1 pathway regulated by amino acids. J Zhejiang Univ SciB 2019;20:699-712. https://doi.org/10.1631/jzus.B1900181
  25. Parmigiani A, Nourbakhsh A, Ding B, et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 2014;9:1281-91. https://doi.org/10.1016/j.celrep.2014.10.019
  26. Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 2014;159:122-33. https://doi.org/10.1016/j.cell.2014.08.038
  27. Lee M, Kim JH, Yoon I, et al. Coordination of the leucinesensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proc Natl Acad Sci USA 2018; 115:E5279-88. https://doi.org/10.1073/pnas.1801287115
  28. Kim YM, Stone M, Hwang TH, et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol Cell 2012;46:833-46. https://doi.org/10.1016/j.molcel.2012.04.007
  29. Luo C, Zheng N, Zhao S, Wang J. Sestrin2 negatively regulates casein synthesis through the SH3BP4-mTORC1 pathway in response to aa depletion or supplementation in cow mammary epithelial cells. J Agric Food Chem 2019;67:4849-59. https://doi.org/10.1021/acs.jafc.9b00716
  30. Tome D. Protein, amino acids and the control of food intake. Br J Nutr 2004;92(Suppl 1):S27-30. https://doi.org/10.1079/bjn20041138
  31. Budanov AV, Karin M. P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60. https://doi.org/10.1016/j.cell.2008.06.028
  32. Guttler A, Weinholdt C, Ruff E, et al. SESN2 knockdown increases betulinic acid-induced radiosensitivity of hypoxic breast cancer cells. Cells 2023;12:177. https://doi.org/10.3390/cells12010177
  33. Ma Y, Zhang G, Kuang Z, et al. Empagliflozin activates Sestrin2mediated AMPK/mTOR pathway and ameliorates lipid accumulation in obesity-related nonalcoholic fatty liver disease. Front Pharmacol 2022;13:944886. https://doi.org/10.3389/fphar.2022.944886
  34. Cusack S, Yaremchuk A, Tukalo M. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyladenylate analogue. EMBO J 2000;19:2351-61. https://doi.org/10.1093/emboj/19.10.2351
  35. Han JM, Jeong SJ, Park MC, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012;149:410-24. https://doi.org/10.1016/j.cell.2012.02.044
  36. Chen X, Ma JJ, Tan M, et al. Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyltRNA synthetase. Nucleic Acids Res 2011;39:235-47. https://doi.org/10.1093/nar/gkq763
  37. Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 2013;14:133-9. https://doi.org/10.1038/nrm3522
  38. Kimball SR, Gordon BS, Moyer JE, Dennis MD, Jefferson LS. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal 2016;28:896-906. https://doi.org/10.1016/j.cellsig.2016.03.008
  39. Son SM, Park SJ, Lee H, et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab 2019;29: 192-201. https://doi.org/10.1016/j.cmet.2018.08.013
  40. Zhang YK, Qu YY, Lin Y, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun 2017;8:464. https://doi.org/10.1038/s41467017-00489-5
  41. Kim S, Snyder SH. Nutrient amino acids signal to mTOR via inositol polyphosphate multikinase. Cell Cycle 2011;10: 1708-10. https://doi.org/10.4161/cc.10.11.15559
  42. Gu X, Orozco JM, Saxton RA, et al. SAMTOR is an S-aden 2017;358:813-8. https://doi.org/10.1126/science.aao3265
  43. Kim SH, Choi JH, Wang P, et al. Mitochondrial threonyltRNA synthetase TARS2 is required for threonine-sensitive mTORC1 activation. Mol Cell 2021;81:398-407. https://doi.org/10.1016/j.molcel.2020.11.036
  44. Zeng QY, Zhang F, Zhang JH, et al. Loss of threonyl-tRNA synthetase-like protein Tarsl2 has little impact on protein synthesis but affects mouse development. J Biol Chem 2023; 299:104704. https://doi.org/10.1016/j.jbc.2023.104704
  45. Muroi Y, Ishii T. Umami taste receptor functions as an amino acid sensor via Gαs subunit in N1E-115 neuroblastoma cells. J Cell Biochem 2012;113:1654-62. https://doi.org/10.1002/jcb.24034
  46. Yuan M, McNae IW, Chen Y, et al. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor. Biochem J 2018;475:1821-37. https://doi.org/10.1042/BCJ20180171
  47. Ye J, Palm W, Peng M, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev 2015;29:2331-6. https://doi.org/10.1101/gad.269324.115
  48. Hu X, Niu Y, Luo P, et al. Amino acid sensor GCN2 promotes SARS-CoV-2 receptor ACE2 expression in response to amino acid deprivation. Commun Biol 2022;5:651. https://doi.org/10.1038/s42003-022-03609-0
  49. Rudenko O, Shang J, Munk A, et al. The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Mol Metab 2019; 19:49-64. https://doi.org/10.1016/j.molmet.2018.10.012 
  50. Chen YD, Dahanukar A. DH44 neurons: gut-brain amino acid sensors. Cell Res 2018;28:1048-9. https://doi.org/10.1038/s41422-018-0101-z
  51. Yang Z, Huang R, Fu X, et al. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 2018;28:1013-25. https://doi.org/10.1038/s41422-018-0084-9
  52. Oh Y, Suh G. Starvation-induced sleep suppression requires the Drosophila brain nutrient sensor. J Neurogenet 2023;37: 70-7. https://doi.org/10.1080/01677063.2023.2203489
  53. Zhao W, Zhang Y, Lin S, et al. Identification of Ubr1 as an amino acid sensor of steatosis in liver and muscle. J Cachexia Sarcopenia Muscle 2023;14:1454-67. https://doi.org/10.1002/jcsm.13233
  54. Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 2008;283:24011-28. https://doi.org/10.1074/jbc.M802583200
  55. Li K, Wu JL, Qin B, et al. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res 2020;30:163-78. https://doi.org/10.1038/s41422-019-0257-1
  56. Yan G, Yang J, Li W, Guo A, Guan J, Liu Y. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1dependent amino acid sensing. Nat Cell Biol 2023;25:75464. https://doi.org/10.1038/s41556-023-01123-x
  57. Kim BG. Insects as animal feed: novel ingredients for use in pet, aquaculture and livestock diet. Anim Biosci 2022;35:1534. https://doi.org/10.5713/ab.22.0001B
  58. Yoon I, Nam M, Kim HK, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science 2019;367:205-10. https://doi.org/10.1126/science.aau2753
  59. Bandyopadhyay U, Todorova P, Pavlova NN, et al. Leucine retention in lysosomes is regulated by starvation. Proc Natl Acad Sci USA 2022;119:e2114912119. https://doi.org/10.1073/pnas.2114912119
  60. Kim S, Yoon I, Son J, et al. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation. Cell Rep 2021;35:109031. https://doi.org/10.1016/j.celrep.2021.109031
  61. Choi H, Son JB, Kang J, et al. Leucine-induced localization of Leucyl-tRNA synthetase in lysosome membrane. Biochem Biophys Res Commun 2017;493:1129-35. https://doi.org/10.1016/j.bbrc.2017.09.008
  62. Kim JH, Lee C, Lee M, et al. Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyltRNA synthetase and RagD interaction. Nat Commun 2017; 8:732. https://doi.org/10.1038/s41467-017-00785-0
  63. Kim K, Yoo HC, Kim BG, et al. O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Nat Commun 2022;13:2904. https://doi.org/10.1038/s41467-022-30696-8
  64. Liu W, Wang T, Zhao K, et al. Effects of individual essential amino acids on growth rates of young rats fed a low-protein diet. Animals 2024;14:959. https://doi.org/10.3390/ani14060959
  65. Wellington MO, Hulshof TG, Resink JW, Ernst K, Balemans A, Page GI. The effect of supplementation of essential amino acid combinations in a low crude protein diet on growth performance in weanling pigs. Transl Anim Sci 2023;7:txad008. https://doi.org/10.1093/tas/txad008
  66. Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and beta-hydroxybeta-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol 2020;128:286-95. https://doi.org/10.1152/japplphysiol.00332.2019
  67. Park HJ, Yang SG, Koo DB. SESN2/NRF2 signaling activates as a direct downstream regulator of the PERK pathway against endoplasmic reticulum stress to improve the in vitro maturation of porcine oocytes. Free Radic Biol Med 2022;178:41327. https://doi.org/10.1016/j.freeradbiomed.2021.12.258
  68. Wang Y, Liu J, Wu H, Fang X, Chen H, Zhang C. Amino acids regulate mTOR pathway and milk protein synthesis in a mouse mammary epithelial cell line is partly mediated by T1R1/T1R3. Eur J Nutr 2017;56:2467-74. https://doi.org/10.1007/s00394-016-1282-1
  69. Gai Z, Hu S, He Y, et al. L-arginine alleviates heat stress-induced mammary gland injury through modulating CASTOR1mTORC1 axis mediated mitochondrial homeostasis. Sci Total Environ 2024;926:172017. https://doi.org/10.1016/j.scitotenv.2024.172017
  70. Weber SL, Hustedt K, Schnepel N, Visscher C, Muscher-Banse AS. Modulation of GCN2/eIF2alpha/ATF4 pathway in the liver and induction of FGF21 in young goats fed a proteinand/or phosphorus-reduced diet. Int J Mol Sci 2023;24:7153. https://doi.org/10.3390/ijms24087153
  71. Tao X, Kong FJ, Liang Y, et al. Screening of candidate genes related to differences in growth and development between Chinese indigenous and Western pig breeds. Physiol Genomics 2023;55:147-53. https://doi.org/10.1152/physiolgenomics.00157.2022
  72. Tian C, Wu J, Jiao J, Zhou C, Tan Z. The expression of nutrient chemosensing gate molecules in the ileum and colon is altered for goats fed on a high-grain diet. Anim Sci J 2022;93:e13754. https://doi.org/10.1111/asj.13754