DOI QR코드

DOI QR Code

Porcine granulosa cell transcriptomic analyses reveal the differential regulation of lncRNAs and mRNAs in response to all-trans retinoic acid in vitro

  • Jinzhu Meng (College of Veterinary Medicine, Hunan Agricultural University) ;
  • Xiuwen Chen (College of Veterinary Medicine, Hunan Agricultural University) ;
  • Huabiao Wang (College of Veterinary Medicine, Hunan Agricultural University) ;
  • Yixuan Mi (College of Veterinary Medicine, Hunan Agricultural University) ;
  • Runsheng Zhou (College of Veterinary Medicine, Hunan Agricultural University) ;
  • Hongliang Zhang (College of Veterinary Medicine, Hunan Agricultural University)
  • 투고 : 2024.05.27
  • 심사 : 2024.08.12
  • 발행 : 2025.02.01

초록

Objective: The active metabolite of vitamin A, all-trans retinoic acid (ATRA), is involved in the proliferation and differentiation of granulosa cells, and promotes the follicular development, oocyte maturation, and ovulation in mammals. This study aims to investigate the ATRA induced potential long noncoding RNAs (lncRNAs) that regulate the expression of genes associated with granulosa cell proliferation and follicular development. Methods: The lncRNA and mRNA profiles of porcine granulosa cells from ATRA treatment and control group in vitro were constructed through RNA sequencing. Meanwhile, the sequencing data were verified using quantitative polymerase chain reaction (qPCR). Results: A total of 86 differentially expressed lncRNAs and 128 differentially expressed genes (DEGs) were detected in granulosa cells after ATRA treatment. The quantitative real-time PCR (qRT-PCR) results were consistent with the RNA-seq data. Functional annotation analysis revealed that the DEGs were remarkably enriched in ovary function and reproduction which contained FoxO, Hippo, Oocyte meiosis, mammalian target of rapamycin signaling pathway, as well as several pathways associated with hormone regulation like oxytocin signaling pathway and steroid hormone biosynthesis. Moreover, an interaction network of lncRNAs and their cis-target DEGs was constructed, and 7 differentially expressed lncRNAs and 6 cis-target DEGs were enriched in ovarian steroidogenesis and reproduction. Conclusion: These findings expand the lncRNA catalogue and provide a basis for further studies on the mechanism of ATRA-mediated lncRNA regulation of follicular development in pigs.

키워드

과제정보

This research was funded by grants from the Young Scientists Fund of the National Natural Science Foundation of China (31802151), the Natural Science Foundation of Hunan Province (2024JJ5198), and the China Postdoctoral Science Foundation (2018M642981).

참고문헌

  1. Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update 2005;11:162-78. https://doi.org/10.1093/humupd/dmi001
  2. Meng J, Zhao Y, Lan X, Wang S. Granulosa cell transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to follicle development in goat. Reprod Domest Anim 2022;57:967-79. https://doi.org/10.1111/rda.14163
  3. Li P, Meng J, Liu W, Smith GW, Yao J, Lyu L. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave. Int J Genom 2016; 2016:3472748. https://doi.org/10.1155/2016/3472748
  4. Meng J, Zhao Y, Song X, An Q, Wu Z. Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Anim Biotechnol 2024;35:2259967. https://doi.org/10.1080/10495398.2023.2259967
  5. Wei Q, Shi F. Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia. Anim Reprod Sci 2013;138:282-91. https://doi.org/10.1016/j.anireprosci.2013.02.025
  6. Son WY, Das M, Shalom-Paz E, Holzer H. Mechanisms of follicle selection and development. Minerva Ginecol 2011; 63:89-102.
  7. Zheng Y, Ma L, Liu N, et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development. Animals 2019;9:1111. https://doi.org/10.3390/ani9121111
  8. Reverchon M, Cornuau M, Ramé C, Guerif F, Royere D, Dupont J. Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells. Fertil Steril 2013;100:247-55. https://doi.org/10.1016/j.fertnstert.2013.03.008
  9. Feng G, Liu J, Lu Z, et al. miR-450-5p and miR-202-5p synergistically regulate follicle development in black goat. Int J Mol Sci 2023;24:401. https://doi.org/10.3390/ijms24010401
  10. Li H, Clagett-Dame M. Vitamin A deficiency blocks the initiation of meiosis of germ cells in the developing rat ovary in vivo. Biol Reprod 2009;81:996-1001. https://doi.org/10.1095/biolreprod.109.078808
  11. Abdelnour SA, Abd El-Hack ME, Swelum AA, et al. The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: a review. Animals 2019;9:561. https://doi.org/10.3390/ani9080561
  12. Minkina A, Lindeman RE, Gearhart MD, et al. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary. Dev Biol 2017;424:208-20. https://doi.org/10.1016/j.ydbio.2017.02.015
  13. Pu Y, Wang Z, Bian Y, et al. All-trans retinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells during in vitro maturation. Anim Sci J 2014;85:833-9. https://doi.org/10.1111/asj.12216
  14. Chen F, Jiang Z, Jiang S, et al. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 2016;95:30-40. https://doi.org/10.3382/ps/pev305
  15. Whaley SL, Hedgpeth VS, Farin CE, Martus NS, Jayes FCL, Britt JH. Influence of vitamin A injection before mating on oocyte development, follicular hormones, and ovulation in gilts fed high-energy diets. J Anim Sci 2000;78:1598-1607. https://doi.org/10.2527/2000.7861598x
  16. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172:393-407. https://doi.org/10.1016/j.cell.2018.01.011
  17. Liu X, Zhang Y, Shen L, et al. LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate. Toxicol Lett 2021;341:51-8. https://doi.org/10.1016/j.toxlet.2021.01.017
  18. Gao L, Liu Y, Wen Y, Wu W. LncRNA H19-mediated mouse cleft palate induced by all-trans retinoic acid. Hum Exp Toxicol 2017;36:395-401. https://doi.org/10.1177/0960327116651121
  19. Best MW, Wu J, Pauli SA, et al. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells. Mol Hum Reprod 2015;21: 527-34. https://doi.org/10.1093/molehr/gav017
  20. Zheng J, Wang Z, Yang H, et al. Pituitary transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to prolificacy in different fecb genotyping sheep. Genes 2019;10:157. https://doi.org/10.3390/genes10020157
  21. Guarrera L, Kurosaki M, Garattini SK, et al. Anti-tumor activity of all-trans retinoic acid in gastric-cancer: genenetworks and molecular mechanisms. J Exp Clin Cancer Res 2023;42:298. https://doi.org/10.1186/s13046-023-02869-w
  22. Isoherranen N, Zhong G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol Ther 2019;204:107400. https://doi.org/10.1016/j.pharmthera.2019.107400
  23. Gudas LJ. Retinoid metabolism: new insights. J Mol Endocrinol 2022;69:T37-49. https://doi.org/10.1530/JME-22-0082
  24. Shen M, Jiang YZ, Wei Y, et al. Tinagl1 suppresses triplenegative breast cancer progression and metastasis by simultaneously inhibiting integrin/fak and egfr signaling. Cancer Cell 2019;35:64-80. https://doi.org/10.1016/j.ccell.2018.11.016
  25. Wang C, Sun H, Davis JS, et al. FHL2 deficiency impairs follicular development and fertility by attenuating EGF/ EGFR/YAP signaling in ovarian granulosa cells. Cell Death Dis 2023;14:239. https://doi.org/10.1038/s41419-023-05759-3
  26. Yu EJ, Choi WY, Park MS, et al. RNA sequencing-based transcriptome analysis of granulosa cells from follicular fluid: genes involved in embryo quality during in vitro fertilization and embryo transfer. PLoS One 2023;18:e0280495. https://doi.org/10.1371/journal.pone.0280495
  27. Brożyna AA, Jóźwicki W, Jochymski C, Slominski AT. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas. Oncol Rep 2015;33: 599-606. https://doi.org/10.3892/or.2014.3666
  28. Liu Z, Rudd MD, Hernandez-Gonzalez I, et al. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol 2009;23:649-61. https://doi.org/10.1210/me.2008-0412
  29. Zhang Y, Chen X, Zhou Z, Tian X, Yang P, Fu K. CYP19A1 may influence lambing traits in goats by regulating the biological function of granulosa cells. Animals 2022;12:1911. https://doi.org/10.3390/ani12151911
  30. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, CatteauJonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 2016;22: 709-24. https://doi.org/10.1093/humupd/dmw027
  31. Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A long noncoding RNA, lncRNA-Amhr2, plays a role in amhr2 gene activation in mouse ovarian granulosa cells. Endocrinology 2017;158:4105-21. https://doi.org/10.1210/en.2017-00619
  32. Jiang B, Xue M, Xu D, Song J, Zhu S. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a. J Cell Mol Med 2020;24:451-64. https://doi.org/10.1111/jcmm.14753
  33. Zolfaghari R, Chen Q, Ross AC. DHRS3, a retinal reductase, is differentially regulated by retinoic acid and lipopolysaccharide-induced inflammation in THP-1 cells and rat liver. Am J Physiol Gastrointest Liver Physiol 2012;303:G578-88. https://doi.org/10.1152/ajpgi.00234.2012
  34. Wu H, Liu Q, Yang N, Xu S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci Total Environ 2023;871:161962. https://doi.org/10.1016/j.scitotenv.2023.161962