Received: 22 March 2024

Revised: 26 July 2024

Accepted: 14 August 2024

DOI: 10.4218/etrij.2024-0135

SPECIAL ISSUE

ETRIJournal WILEY

Asynchronous interface circuit for nonlinear connectivity
in multicore spiking neural networks

Sung-Eun Kim |
Hyuk Kim |

Artificial Intelligence SoC Research
Division, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea

Correspondence

Sung-Eun Kim, Artificial Intelligence SoC
Research Division, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.

Email: sekim@etri.re.kr

Funding information

This work was supported by the
Electronics and Telecommunications
Research Institute (ETRI) grant funded by
the Korea government (24ZS1230,
memory-computation convergence
neuromorphic computing technology).

1 | INTRODUCTION

Kwang-I1 Oh [
Mi-Jeong Park |

Taewook Kang | Sukho Lee |

Jae-Jin Lee

Abstract

To expand the scale of spiking neural networks (SNNs), an interface circuit
that supports multiple SNN cores is essential. This circuit should be designed
using an asynchronous approach to leverage characteristics of SNNs similar to
those of the human brain. However, the absence of a global clock presents tim-
ing issues during implementation. Hence, we propose an intermediate latching
template to establish asynchronous nonlinear connectivity with multipipeline
processing between multiple SNN cores. We design arbitration and distribu-
tion blocks in the interface circuit based on the proposed template and fabri-
cate an interface circuit that supports four SNN cores using a full-custom
approach in a 28-nm CMOS (complementary metal-oxide-semiconductor)
FDSOI (fully depleted silicon on insulator) process. The proposed template
can enhance throughput in the interface circuit by up to 53% compared with
the conventional asynchronous template. The interface circuit transmits spikes
while consuming 1.7 and 3.7 pJ of power, supporting 606 and 59 Mevent/s in
intrachip and interchip communications, respectively.

KEYWORDS
asynchronous, connectivity, interchip communication, interface circuit, intrachip
communication, nonlinear connectivity, spiking neural network

interface, they suffer from high power consumption of
the global clock, large scale clock trees, spike delays, and

Spiking neural networks (SNNs), inspired by the human
brain, use spikes for information transmission [1, 2].
Because of the spike-based operation, SNNs feature a
simple architecture and afford high energy efficiency
[3, 4]. However, implementing SNNs remains challeng-
ing [5], and their scalability is inevitably limited. To
achieve scalability, an interface circuit that integrates
multiple SNNs must be developed. While conventional
synchronous approaches can be used to design such an

clock skew. To overcome these issues and enhance scal-
ability, an asynchronous approach for the interface cir-
cuit is necessary [6, 7].

The properties of asynchronous circuits differ inher-
ently from those of synchronous circuits [8]. Synchro-
nous circuits rely on a global clock to provide reference
time information throughout the system. To implement
these circuits, clock buffers are repeatedly inserted to
secure a time window around the clock edge and prevent

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2024 ETRI

878 | wileyonlinelibrary.com/journal/etrij

ETRI Journal. 2024;46(5):878-889.

https://orcid.org/0000-0001-9039-8902
https://orcid.org/0000-0002-8715-7929
https://orcid.org/0000-0001-9147-3898
mailto:sekim@etri.re.kr
https://doi.org/10.4218/etrij.2024-0135
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

KIM ET AL.

clock skew issues in diverse and scattered functional
blocks. These clock buffers consume additional power
and increase the silicon area. In contrast, asynchronous
circuits do not use discrete time. Instead, they employ
asynchronous backbone logic based on handshaking pro-
tocols to address the challenges associated with global
clock architectures [9, 10].

Recent studies on interface circuits for neural net-
works focus on implementing nonlinear connectivity in
multiple neural cores with reduced spike latency while
minimizing hardware resources. A hybrid routing
scheme that supports both multicast and unicast reduces
peak spike traffic and achieves low spike latency [11].
The merge-and-link scheme improves connectivity by
decreasing spike transmission latency from a topological
perspective [12]. However, most existing studies rely on
synchronous approaches due to implementation conve-
nience, which introduces synchronization issues between
different timing points [13, 14]. In contrast, the dual-level
mask scheme, as an asynchronous approach, significantly
reduces area and spike latency for sparse events but
comes with high power consumption and low through-
put [15]. In this work, we propose an asynchronous inter-
face circuit that supports nonlinear connectivity,
particularly suited for applications with intense event
competition.

The architecture of the proposed multicore SNN inte-
grated circuit (IC), as shown in Figure 1, comprises four
SNN core blocks and one asynchronous interface block.
Each SNN core block comprises spike buffers, synapses,
and neural units for neural computations. These four
SNN core blocks are designed using analog techniques,

Async
router

Async
router

\ AERIN

Multicore
yur SNNIC

\ AERIN
\ Multicore

AER|OUT SNNIC

Multicore SNN IC

Multicore SNN

Interface Rx Interface Tx

AER Distribution 12| SNN core #1 (Fully Connected Net) [T Arbitrati AER
an block] - H block our
i o | HH
1o E
REQ . E o- REQ
: and ole - Hand ~
ACK shaking) 0l -| || Arbiter| | | shaking [«
Trigger l " o= O T‘mggu
Encoded = | o- | HB| Arbiter Encoded
Address Address L] Spike Synapse Neural Hdl Address | |Address
latching 1 buffers N units T encoding
Encoded | S Hol] Select
address l _’D:—:| SNN core #2 F"’ - Neuron
| - Hol
Core —.D:_:| SNN core #3 F—-» Arbiter
decoding
Hof
LTI e

Interface based on asynchronous AER protocol

FIGURE 1 Architecture of multicore spiking neural network
(SNN) integrated circuit (IC).

ETRI Journal—WI LEYM

and the network is fully interconnected. The
asynchronous interface block comprises arbitration and
distribution blocks based on a four-phase address-
event-representation (AER) handshaking protocol,
enabling asynchronous communication channels
between the SNN cores. The arbitration and distribution
blocks are constructed to support asynchronous non-
linear pipelines. The interface circuit receives an encoded
address from an externally transmitting SNN IC, distrib-
utes spikes to the spike buffers in the SNN core blocks,
accumulates spikes from the neural units in the SNN core
blocks, and transmits the neural processing results as an
encoded address to an external receiving SNN IC through
an interchip communication channel.

The remainder of this paper is organized as follows:
Section 2 analyzes the behaviors of conventional tem-
plates for asynchronous backbone logic. Section 3 intro-
duces the intermediate latching template and discusses
the structure of the arbitration and distribution blocks
based on this proposed template for asynchronous com-
munication. Section 4 presents the implementation of the
multicore SNN IC to validate the proposed interface cir-
cuit, including an evaluation and analysis of the interface
block’s performance. Finally, Section 5 provides the
conclusions.

2 | CONVENTIONAL
ASYNCHRONOUS TEMPLATE

The asynchronous approach is a compelling alternative
to the synchronous approach for SNNs owing to its high
speed and low power consumption. Unlike synchronous
methods, the asynchronous approach does not rely on a
global clock for timing; instead, the validity of data must
be verified in advance. Two primary asynchronous design
methods exist, bundled-data (BD) and quasi-
delay-insensitive (QDI) designs, both of which provide
reference time information to each functional block. In
the BD design method, data are represented with binary
codes similar to those in synchronous designs. A single
wire carries one bit of information, and a control signal is
used to validate the data. In contrast, the QDI design
method incorporates a control signal within the data
itself. The dual-rail encoding is widely used method in
QDI systems. In dual-rail encoding, each bit of data is
represented by two wires, A and B. A high logic value
is represented by setting wire A high and wire B low,
while a low logic value is represented by setting wire A
low and wire B high. Data validity is verified when the
two wires are set to opposite values simultaneously.

In SNNs, data are represented by spikes without
values, and the presence of spikes indicates the validity of

KIM ET AL.

880—|—W1 LEY-ETRI Journal

Functional Functional Functional Functional Functional Functional
block block block block block block
(n) (n+1) (n) (n+1) (n) n+1)

)

o o| | o Ttt-0

Token Token Token

Reset

(A) ®) ©

FIGURE 2 Evaluation parameters of asynchronous systems:
(A) Forward latency, (B) backward latency, and (C) cycle time =
A) + (B).

the data. Because no additional control signal for data
validity is required in SNNs, the Muller pipeline based on
the QDI template can be employed [10]. The Muller pipe-
line controls the overall signal flow over the entire asyn-
chronous system and conveys accurate time information
to each functional block based on the handshaking proto-
col. This renders the circuit insensitive to variations and
ensures a reliable operation in asynchronous systems. In
this section, we analyze the conventional asynchronous
QDI templates for the Muller pipeline proposed in previ-
ous studies [16, 17].

The evaluation parameters for asynchronous systems
should be defined before analyzing the behaviors of con-
ventional templates. Unlike synchronous systems, the
performance of asynchronous systems is determined by
the time between the generations of successive valid
tokens. Three parameters are defined for asynchronous
systems, as shown in Figure 2: forward latency, backward
latency, and cycle time. Forward latency is the time
required to move a token between two adjacent stages.
Backward latency is the time required to reset the stage
to receive a new token after shifting it to the next stage.
The local cycle time is the sum of forward and backward
latencies. It represents the shortest time required to com-
plete handshaking between adjacent stages.

2.1 | Weak-conditioned half buffer
(WCHB) template

The WCHB is widely used as an asynchronous
template for the Muller pipelines [18]. The structure of
the WCHB and its signal flow in the pipeline are illus-
trated in Figure 3. The WCHB comprises a functional
block, a completion detector (CD), two data signals
(input and output), and two acknowledgement signals
(Left-ack and Right-ack), where fg,. is the time delay of
a functional logic block, tcp is the time delay of the CD,
and t, is the time delay resulting from resetting the func-
tional logic block. The CD indicates whether the data is
valid. When a CD is placed on the input side of a

WCHB template (n — 1) ‘WCHB template (n) WCHB template (n + 1)
Ack(n - 1) Ack(n); J Ack(n +1) Function () Reset

&
r Function (n-1) Enable I
Function Function

Block

)

Function
block

D Block

Data(n—1)| (n-1) Data(n) (n) Data(n + 1) (n+1) Data(n +2)
Function (n - 1) Function (n + 1)
Eval : tg,c Eval : fg,c

Function (n)
Eval : fgn

Ly
CD(n—-1)-:1ep CD (n)-: fep 5, CD(n+1)-:1¢p
Function (n - 1) Function (n) 3 Function (n + 1)
Reset : 7, Reset : Iy Reset : /iy
CD(n—1)+:tep CD (n) +: tep CD(n+1)+:tcp
Stage (n— 1) Stage (n) Stage (n+ 1)

FIGURE 3 Structure and data flow of weak-conditioned half
buffer (WCHB) pipeline.

functional block, it can be called as an LCD indicating
the validity of the input data. Conversely, when a CD is
on the output side, it can be called as an RCD indicating
the validity of the output data. The initial state of a
WCHB is specified as no input data and no active-low
acknowledgement signals. The signal flow of a single
WCHB template is described as follows: First, valid input
data arrives at the functional block. Next, the output data
are propagated to the next functional block after time
trunc- The output data then activate the Left-ack signal,
which resets the input data through the CD block at time
tcp. Finally, the activated Left-ack signal releases the
input data to its initial state at time t,5. The validity and
neutrality of the output data indicate those of the input
data [16, 19]. This feature, known as weak-conditioned
logic, is fundamental for the WCHB. Additionally, the
WCHB cannot hold two distinct tokens for the input and
output data, nor can it permit concurrent read/write
functions, unlike a full buffer. In fact, a half buffer must
be read before the WCHB can be rewritten.

FLwcu =3 X tfunc,
BLwcup =2 X tcp + st (1)
CTwca =3 X tfunc +2 X tep + trst.

To analyze one cycle time for the WCHB, three stages
should be built in the pipeline, as shown in Figure 3. To
complete one cycle of handshaking in function (n— 1) of
the WCHB in the pipeline, data must propagate to func-
tion (n+1) through function (n), and the acknowledge-
ment signal must return from function (n + 1) to function
(n—1), as highlighted by the thick lines. The evaluation
parameters for the WCHB, forward latency, backward
latency, and cycle time, are given in (1). Here, FLwcus
and BLwcpgg represent the forward and backward

KIM ET AL.

latencies of the WCHB, respectively, and CTwcyg denotes
the cycle time, which is the sum of FLycyp and BLwcys.
FLwcup employs three fg. elements, whereas BLwcyp
employs two fcp and one fg.

2.2 | Precharged half buffer (PCHB)
template

The PCHB is an alternative to the WCHB [20]. The struc-
ture of the PCHB and its signal flow in the pipeline are
shown in Figure 4. The PCHB is composed of a dynamic
functional block with a CD at the input and output, also
known as the LCD and RCD, respectively, where tgy. is
the time delay of the functional logic block, tcp is the
time delay of the CD, f,. is the precharge time of the
functional logic block, and ¢ is the time for synchroniz-
ing the validity and neutrality of the input and output
through the Muller-C element (MCE). To confirm that
the validity and neutrality of the input and output are
secured simultaneously, the MCE is employed, which is a
basic circuit in the backbone pipeline of the asynchro-
nous system. Owing to the MCE, the output is trans-
formed to the logic value of the inputs when all inputs
are equal. The most commonly used two-input MCE
holds the output value until the values of the two inputs
match. Notably, the functional block in the PCHB is com-
posed of dynamic logic, which enables faster operation.
The functional block in the PCHB operates in two steps:
precharge and evaluation. Precharge step is for setting up
the initial conditions, and evaluation step is for determin-
ing the final output state. Although the PCHB aligns with
the fundamental concepts of the WCHB, it separately

PCHB template (n — 1) PCHB template (1)

Rack(n —2) w Rack(n — 1) v Rack(n) W Rack(n + 1)
Lack(n—1) O Laack(n) o} Yakon e Jpktn +
= {
Function (n — 1), D Function (1) |,
N be Enable o e I Precharge [en P
D

PCHB template (n + 1)

Function Function Function

block

= Block Block
Data(n - 1)| n-1)

ata(n)) Data(n + 1)

n+1) Data(n + 2)

Function (n — 1)
Eval : tg,

Function (n)
Eval : f,c

Function (n + 1)
Eval : fju

CD(n—1)+:tcp CD (n) - : tep CD (n+1)-:1cp

Function (n - 1) Function (n) Function (n + 1)
Precharge : 7, Precharge : 7, Precharge : 7.
CD(n—1)+:tcp CD (n) +:1cp CD(n+1)+:icp

Stage (n— 1) Stage (n) Stage (n + 1)

FIGURE 4 Structure and data flow of precharged half buffer
(PCHB) pipeline.

ETRI Journal—WI LEYm

examines the validity and neutrality of the input and out-
put using the LCD and RCD, respectively. After examin-
ing the validity and neutrality of the input and output,
the functional block is enabled, and the functional block
in the previous stage is charged to its initial state. The ini-
tial state of a single PCHB block is specified as no input
data and no active-low acknowledgement signals. Valid
input data arrive at the functional block, and the result is
propagated to the next functional block after time ffnc.
The validity of both the input and output data activates
the Left-ack signal, which resets the input data through
the MCE at time tcp + tc. The activated Left-ack signal
then releases the input data to its initial state at time fpe.

FLpcup = 3 X tune,
BLpcup =2 X (tcp +tc) + tpres (2)
CTpcup = 3 X tfunc +2 X (tcp +tc) + tpre-

The behavior of a three-stage linear PCHB pipeline is
similar to that of a WCHB pipeline except for the addi-
tional terms of fc and fp for the dynamic logic. To com-
plete one cycle of handshaking in function (n — 1) of the
PCHB pipeline, data must propagate to function (n + -
1), and the acknowledgement signal must return from
function (n+1) to function (n—1), as highlighted path
with thick lines, similar to the WCHB pipeline. The eval-
uation parameters for the PCHB, forward latency, back-
ward latency, and cycle time are given in (2). Here,
FLpcyps and BLpcyp represent the forward and backward
latencies of the PCHB, respectively, CTpcyp denotes the
cycle time, which is the sum of FLpcyg and BLpcyg. The
transitions in forward latency for both the PCHB and
WHCB are aligned. However, due to the faster dynamic
logic used in the PCHB compared to complementary
logic in the WCHB, FLpcyp is lower than FLycygp. In
terms of backward latency, the PCHB has more transi-
tions owing to the MCE for controlling the enabled sig-
nal, which adds a typically insignificant delay overhead
to its cycle time.

3 | DESIGN OF ASYNCHRONOUS
INTERFACE CIRCUIT FOR SNN

The conventional asynchronous backbone logic is opti-
mal to provide reference time information for linear
asynchronous applications with single input and output
channels. However, the connectivity of SNNs is more
complex than that of linear asynchronous applications.
To scale up a single SNN core to multiple cores, non-
linear connectivity such as join and fork functions should
be implemented in the interface circuit. The join function
has multiple inputs for a single output channel, whereas

KIM ET AL.

&LWI LEY-ETRI Journal

the fork function has a single input for multiple output
channels. To obtain nonlinear connectivity with multiple
pipelines in SNNs, the template for the asynchronous
backbone logic must be modified to process these pipe-
lines. Without modifications to the templates, processing
nonlinear connectivity inevitably results in delays when
the signals interconnect. This section presents an inter-
mediate latching template for asynchronous nonlinear
connectivity in SNNs, the structures of the arbitration
block for the join function, and the distribution block for
the fork function based on the proposed template.

3.1 | Intermediate latching template

To implement nonlinear connectivity in SNNs and con-
figure multiple pipelines for delivering congestion-free
spikes in parallel, a template is designed to decouple indi-
vidual functional blocks with a short cycle time. We pre-
sent an intermediate latching template designed to
reduce the cycle time of each functional block. By decou-
pling individual functional blocks, we improve through-
put through parallel processing and prevent delays in one
stage from propagating to neighboring stages.

The structure of the proposed intermediate latching
template and its signal flow are shown in Figure 5. The
proposed template comprises a functional block, a stor-
age unit, a CD, two data signals (input and output), and
two acknowledgement signals (Left-ack and Right-ack),
where tgnc is the time delay of the functional logic block,
tateh 1S the time delay of latching data in the storage, tcp
is the time delay of the CD, and t. is the time delay of
resetting the functional logic block. The initial state of
the proposed template is specified as no input data and
no active-low acknowledgement signals. The signal flow
operates as follows: In the write path, valid data arrive at
the functional block, and the result is propagated to the

Intermediate latching template

Ack(n - 1), Storage unit Ack(”)

)

Read path

Intermediate latching template

Storage unit

Ack(n + 1)

:Fk—" Write path
L

Ld“'\ _in(n)

en

P c Fum\mn
- B block

Rdata_in(n — 1)

Function
block

Ldata_in(n - 1)

Data(n — 1) Data(n)

Rdata_in()
Data(n+ 1)

Function (1) Eval : fg,,c Function (n) Eval : /5,y

Write path

I T e -
Stage (n — 1) Stage (n)
FIGURE 5 Structure and data flow of proposed intermediate
latching pipeline.

output of the functional block at time tg,,.. Subsequently,
the result is latched during storage at time tjuh. The
latched data activate the Left-ack signal to reset the stor-
age in the previous stage through the CD block at time
tcp and releases the functional block in the current stage
to its initial state at time t.. This establishes latched
data, in which the functional block in the current stage
can receive data for the next task without waiting for a
response from the next stage. The results are latched in
the storage unit, waiting for the Right-ack signal from
the functional block in the next stage. In the read path,
when the next stage is ready to read the results, the
Right-ack is activated from the next stage, and the data in
the storage unit are released to the functional block
in the next stage. The released data then return to its ini-
tial state. Because each functional block has its own stor-
age for temporary data regardless of the status of the
neighboring functional blocks, modularization with a
short cycle time can be achieved in an asynchronous
system.

FLInterLatch = tfunc + tatchs
BLInterLatch =2X tep + Lrst, (3)
CTinterLatch = tfunc + tatch + 2 X Ecp + brst.-

The forward latency, backward latency, and cycle
time, are expressed in (3), where FLpyermaen and
BLinterLatch represent the forward and backward latencies
of the intermediate latching template, respectively,
CTlnterLatch 1S the cycle time of the intermediate latching
template, which is the sum of the forward and backward
latencies of the intermediate latching template. The for-
ward latency depends on tg,e and fun, Whereas the
backward latency depends on tcp and f. When the pro-
posed template is compared with conventional asynchro-
nous half buffer templates, such as the WCHB and
PCHB, cycle time for each template should be analyzed.
Conventional templates require three stages to be inter-
connected for one-cycle operation, a characteristic fea-
ture of half buffers used to stabilize signal flow in
asynchronous systems. In these templates, each stage is
strongly correlated with its neighboring functional stages.
The advantages of conventional templates are that they
have relatively simple structure and stable data flow in
the pipeline based on strong correlation with adjacent
stages. However, the strong correlation with neighboring
stages results in a long cycle time and prompts a delay in
one stage, thus affecting the operating time in neighbor-
ing stages. As a result, a one-stage delay can extend the
entire operation time.

To resolve the issues of conventional templates, the pro-
posed template suggests to use a single stage for one-cycle
operation in the pipeline. To decouple individual functional

KIM ET AL.

stages in a pipeline with intermediate latches, it requires
additional cost for forward latency, area, and power. The
forward latency has an overhead of tj,,, when compared
with other conventional asynchronous templates, such as
the half buffer, and additional area and power are
required because intermediate latches must be designed
inside the template. However, in terms of the signal path,
the correlation among the stages is dissolved so that a
delay in one stage does not affect the operation time in
neighboring stages. This improvement enhances the sys-
tem’s throughput and allows multiple stages to process
data simultaneously in parallel. For each stage, this tem-
plate with its reduced cycle time eliminates the need to
wait for its turn to process tasks due to shared hardware
resources. When the input data are sparse, conventional
templates may be sufficient, as they offer stability with
low cost of area and power consumption. However, in
applications such as interface circuits with intense data
competition, the proposed template enhances throughput
by reducing cycle time in the signal path.

3.2 | Arbitration block for join function
The arbitration block implements an asynchronous join
function in the interface circuit. It receives parallel spikes
from the neural units in multiple SNN cores and provides
a token to a selected neural unit for permission to use the
communication channel without congestion. To prevent
congestion, the arbitration block generates an acknowl-
edgement signal for a selected neural unit using a hand-
shaking protocol. The arbitration block based on the
proposed intermediate latching template decouples indi-
vidual function blocks. This decoupling of neural units
from communication reduces response time. Moreover,
this functional separation enables parallel neural units to
resume their tasks without waiting for the communica-
tion channel to be ready.

The structure of an arbitration block with the pro-
posed template is shown in Figure 6. The arbitration
block with the intermediate latching template is based on
a hierarchical tree structure [21, 22]. It comprises several
levels of unit arbitration circuits, each with two input
channels. The number of input channels in the arbitra-
tion block can be increased by stacking additional unit
arbitration circuits. Each unit arbitration circuit forwards
the arbitration input to the next level. When a neural
unit in the SNN core is selected in an arbitration block, it
receives an acknowledgement signal from the top of the
tree. Each unit arbitration circuit employs a mutually
exclusive function to manage the access to the output
channel shared among several independent parties [10].
This function ensures that only one output is activated

ETRI Journal—WI LEYJﬁ

R, Arbitration block
Intermediate U

latching
block

Neural unit
in SNN core #1

Token
return

Intermediate
latching
block

Neural unit
in SNN core #2

= |

nun

uoneniqre

Intermediate
latching
block

Neural unit
in SNN core #3

[

Level 2

Intermediate

latching
e Level 1

Neural unit
in SNN core #4

[

Unit arbitration block
TG

Intermediate latching block

<

e

aaIsnoxg
ey

L

FIGURE 6 Arbitration block with proposed template.

from the two input request signals by blocking the other.
If one input request signal arrives before another signal,
the subsequent input request signal is blocked while the
first request is processed.

Neural units in multiple SNN cores fire spikes with a
request signal to obtain a token in the arbitration block
for communication. Moreover, interchip communication
is a time-consuming process owing to hardware restric-
tions, such as those from interchip input/output (I/O)
pads and wire capacitance. Suppose that a neural unit
generates a spike every 10 ns and an interchip communi-
cation requires 40 ns to transmit a spike to another SNN
core. In conventional asynchronous approaches, a neural
unit must stop generating spikes while waiting for inter-
chip communication to complete. As a result, the neural
unit loses the opportunity to generate up to four-spikes in
40 ns. In SNN systems with intense competition among
neural units, the next firing opportunity might be given
to other units. The arbitration block with the proposed
intermediate latching template addresses this by resetting
the neural units after latching the spike. This allows the
intermediate latches to wait for interchip communication
instead of the neural units themselves. As a result, neural
units can immediately receive the next input spike with-
out waiting for the completion of interchip communica-
tion, thus mitigating potential errors from nonlinear
parallel spike processing.

KIM ET AL.

* | WILEY-ETRI Journal
3.3 | Distribution block for fork function

The distribution block implements an asynchronous fork
function in the interface circuit. Furthermore, it receives
the encoded addresses through the communication chan-
nel and generates an acknowledgement signal after deliv-
ering a spike to the target spike buffer in multiple SNN
cores. Before passing the spikes to the target spike buffer
in the SNN cores, the spike width must be modified to
ensure an appropriate synaptic operation. During com-
munication, the cycle time is determined by the time
required to activate an acknowledgement signal on the
receiver side. As the number of SNN cores that require
spike time information increases, communication delays
can introduce errors into system calculations. However,
the distribution block with the proposed intermediate
latching template reduces the cycle time by generating
the acknowledgement signal after latching the encoded
address on the receiver side.

The structure of a distribution block with the pro-
posed intermediate latching template is shown in
Figure 7. The distribution block comprises three main
components: the handshaking block, the intermediate
latching block, and the address decoding block. The
handshaking block generates an acknowledgement signal
in response to a request signal. The intermediate latching
block temporarily stores the encoded address, and the
address decoding block generates a spike in the target

Ry

Distribution block =
11

Spike shaping
Pt Spikes

SNN core

Spike buffer
in SNN core #1

(==

Encoded
Address

FIGURE 7

Handshaking
protocol
processing

Triggering Ack for
latching latching

Intermediate
latching
block

Handshaking

——

Level 1

-

Latched
Address

Ack for
decoding

Address decoder

Spike shaping
for
SNN core

Spike buffer
in SNN core #2

=

’J

Spike shaping
for
SNN core

Spike buffer
in SNN core #3

R
A
R

1
1
3
4
Ay

1
Aj
1

Spike shaping
for
SNN core

Spike buffer

Spikes) iy SNN core #4

1K

Intermediate Latching Block

DecodEr

VY,

Distribution block with proposed template.

spike buffer. The distribution block employs a hierarchi-
cal tree structure to deliver spikes, preventing excessive
path searches. This structure is crucial for efficiently
delivering spikes to the target neuron and supporting
multiple SNN cores.

When a transmitter attempts to send a spike through
a communication channel, the request signal from the
transmitter is activated with the encoded address of
the firing neuron. The handshaking block in the distribu-
tion block receives the request signal and triggers the
intermediate latches to store the encoded addresses. After
the encoded address is latched, an acknowledgement sig-
nal is generated from the handshaking block. The latched
encoded address is then delivered to the address decoding
block when the SNN core block is ready to process the
spikes. The decoding block generates a spike in the target
spike buffer. The intermediate latching template in the
distribution block generates a fast response to the request
signal, reducing the cycle time. By generating an
acknowledgment signal independently of the next func-
tional block, the proposed template minimizes cycle time
and enhances the overall computational speed of the
system.

3.4 | SNN core block

The multicore SNN IC comprises four SNN cores, each
containing spike buffers, synapses, and neural units.
Each SNN core receives spikes from the previous layer,
processes spikes in parallel, and generates spikes for the
subsequent layer. The scale of the SNN core can be
expanded using an interface circuit. The SNN cores can
be implemented with digital or analog methods [23]. Dig-
ital cores utilize a synchronous global clock to implement
spike buffers, synapses, and neural units. In a synchro-
nous digital SNN, all components are synchronized with
the clock during operation, but this approach fails to ade-
quately mimic the human brain, which operates asyn-
chronously. To overcome the limitations of digital
synchronous architectures and better leverage the charac-
teristics of the human brain, analog asynchronous archi-
tectures should be adopted to implement SNNs. In an
analog implementation, input spikes with charge accu-
mulation are processed based on weights stored in the
synapses.

Our implemented SNN core adopts a fully connected
crossbar architecture that connects all input spike buffers
to all output neural units. Each SNN core consists of
100 input spike buffers, 20 output neural units, and 2000
synapses. The size of each SNN core is adaptable based
on the application. Synapses are generated using pulsed
currents in a simple basic structure that enhances the

KIM ET AL.

flow of synaptic current to accumulate charges in mem-
brane capacitors. The synapses are controlled using an
8-bit weight, and input spikes accumulate charges in the
membrane potential according to the frequency and
amplitude of the synaptic weights. The output neural
units employ a simplest spiking neural model with a
leaky integrated-and-fire structure. In this model, input
spikes from input spike buffers accumulate over time in
the membrane capacitance. When the accumulated
charge in the membrane capacitor exceeds a certain
threshold, an electrical spike is fired by the output neural
units. The encoded address of the fired neural unit is
transferred to the target spike buffer in the next layer of
the SNN core through the interface circuit.

4 | IMPLEMENTATION AND
ANALYSIS

The proposed template is primarily designed to reduce
cycle time during asynchronous signal flow, facilitating
nonlinear connectivity in multiple pipelines. To validate
the improvements of the proposed template, an interface
circuit including arbitration and distribution blocks based
on the proposed design was fabricated using a 28-nm
complementary metal-oxide-semiconductor (CMOS)
fully depleted silicon on insulator (FDSOI) process. The
layout and die photograph of the fabricated multicore
SNN IC are shown in Figure 8. The circuit was designed
with analog design environments and implemented using
a full-custom approach to optimize signal routing paths.
As shown in Figure 8, the interface circuit for core selec-
tion is located in the center of the layout, with four SNN
cores symmetrically distributed around it. This interface
circuit delivers spike signals to the target SNN core, while
the interface circuit for neurons attached to each SNN
core block transmits spike signals to the target spike
buffer in the target SNN core. All signal routing paths
from the core to the neurons were symmetrically
designed to account for wire delays caused by the length
and width of the signal paths. The interface circuit used a
0.9 V nominal supply voltage. In addition, to enhance the
compatibility with external digital ICs, standard digital
I/O pads of 3.3V were employed. An evaluation board
for the multicore SNN IC was developed to validate the
performance of the interface circuit, with a digital syn-
chronous field-programmable gate array (FPGA)
installed to test the IC on the evaluation board.

The evaluation board including two multicore SNN
ICs expanded through the interface circuit is shown in
Figure 9. The multicore SNN ICs on the left and right
sides correspond to the first and second layers, respec-
tively. Input spikes for the multicore SNN IC were

ETRI Journal—=WI LEYJﬁ

S

=4~ Interface for,Neuron®i = sInterfacejfor;Neuron®

Interface’for Neuron=

= Interface for Neuron | -

SNN Core #3

s i in

FIGURE 8 Layout and die photograph of multicore spiking
neural network (SNN) integrated circuit (IC).

Asynchronous inter- Chlp
communication
(Req Ack, Encoded address)

ANAANMM AR

Membrane potential in the 1* layer

Membrane potential in the 2 layer

Ack for inter-chip communication Ack for inter-chip communication

Req for inter-chip comgunication
o =

Membrane potential
in our second layer

Membrane potential
in our first layer

FIGURE 9 Evaluation of expansion using two multicore
spiking neural network (SNN) integrated circuits (ICs).

generated using a digital FPGA IC. The multicore SNN
IC for the first layer processes the input spikes from the
FPGA and delivers the results to the next multicore SNN
IC for the second layer through the interface circuit. The
interface circuit merges parallel spikes from the

KIM ET AL.

886—|—W1 LEY-ETRI Journal

multicore SNN IC in the first layer and distributes them
to multicore SNN IC in the second layer. To analyze the
operational characteristics of the two layers, the SNN
cores were operated in lateral inhibition mode, reducing
the number of spikes as the layers deepened. Addition-
ally, the membrane potentials of both layers were moni-
tored. The periods of firing spikes in the first layer was
shorter than those in the second layer, confirming that
the communication channel was established appropri-
ately using handshaking AER protocols.

The power consumption for the spike transmission
was measured to evaluate the energy efficiency of the
asynchronous communication channel. Continuous
spikes were generated, and the power consumption in
the interface circuit was measured. The energy required
for spike transmission was calculated by dividing the
measured power by the spike count. Power measure-
ments were taken for spike periods of 50 ns, 37.5 ns,
25 ns, and 12.5 ns, including all power consumed under a
0.9 V supply voltage. The energy consumption per spike
transmission for interchip communication is shown in
Figure 10. The energy consumption per spike decreased
as the spike period and supply voltage were reduced. The
interface circuit achieved a low energy consumption of
1.7 pJ and 3.7 pJ for spike transmission in intrachip and
interchip communications, respectively, at a nominal
supply voltage of 0.9 V. Faster spikes resulted in lower
energy consumption per spike transmission. When the
supply voltage was reduced from the nominal voltage of
0.9V to 0.6V for low-energy operation, the energy per
spike transmission was the least. However, the lower sup-
ply voltage resulted in an additional time latency in the
buffer stages, thereby decreasing the throughput of
the interface circuit. Throughput measurements for the
interface circuit were performed at the nominal supply
voltage of 0.9 V.

9 8.5

8 8.0
7 = g
2 o | E
P 70 &
= N Fo
2 5 [65 &
2 4 I L - 60 2
2 T~. L 3
D - Q
3 3 b 55 §
m 1 = 0
2 15 = ko)
- 50 3

1 45

0 4.0

0.6 0.7 0.8 0.9
Supply voltage (V)
FIGURE 10 Energy per spike transmission (in picojoules)

and reference buffer delay (in nanoseconds) for interchip
communication.

The delay in spikes refers to the time required to
transfer a spike from one SNN core to other SNN core.
This can be evaluated by measuring the time delay
between a spike fired in the first layer and the spike
detected in the second layer. The spike delay encom-
passes three steps, encoding the spike, latency in the wir-
ing buffers, and decoding the spike. This delay is related
to the forward latency of the interface circuit. In intra-
chip communication, the delay in the wiring buffers is
insignificant due to the short signal path and absence of
I/O pad capacitance. For intrachip communication, the
delay in the wiring buffers was 0.7 ns. When a spike was
fired in the SNN core of the first layer, it took 2.9 ns for a
spike to be detected in the target spike buffer in the SNN
core of the second layer on the receiver side. In interchip
communication, owing to long wiring path and high
capacitance of I/O pads, the delay in wiring buffers for
the exchanging handshake protocol was 5 ns for both the
rising and falling edges. The delay for spikes between
the SNN cores in interchip communication was approxi-
mately 10.6 ns.

Throughput refers to the time interval required to
transfer a spike from one SNN core to other SNN core
and indicates how quickly the interface circuit can trans-
mit spikes periodically between SNN cores. It is closely
related to the cycle time of the interface circuit. As simi-
lar with the delay in spikes, the environment for intra-
chip communication is better than that for interchip
communication. The delay on wiring buffers in
interchip communication can be extended up to 10 ns
due to the handshaking protocol. For intrachip commu-
nication, the cycle time for transmitting a spike between
SNN cores was 1.7 ns, supporting a throughput of
606 Mevent/s (millions of events per second). In contrast,
the interchip communication required 16.9 ns, support-
ing a throughput of 59.2 Mevent/s through the I/O pads.
Compared to the conventional WCHB template, the pro-
posed intermediate latching template reduced cycle times
from 3.6 to 1.7 ns in intrachip communication and from
19 to 16.9 ns in interchip communication. The through-
put of the proposed template was improved by up to 53%.

A comparison of the performance of previous studies
for neuromorphic systems is presented in Table 1. IBM
Truenorth, designed with digital neurons and hybrid
asynchronous-synchronous networks, uses different sup-
ply voltages for intrachip and interchip communications
to improve compatibility with external components. It
transfers spikes in packet form with a minimum time
step of 1 ms, requiring 2.3 pJ with a 0.77 supply voltage
for intrachip and 26 pJ with a 1.8 V supply voltage for
interchip communication. Dynap exhibits a mixed-signal
architecture with analog spiking neurons and analog syn-
apses as the computing units. It comprises a bidirectional

e ETRI Journa-WILEY.—
TABLE 1 Performance comparison of previous studies for multicore neuromorphic system. (on: intrachip / off: interchip).
IBM Truenorth [24] Dynaps [25] Intel Loihi [26] This study
Technology 28 nm FDSOI 28 nm FinFET 14 nm FDSOI 28 nm
Neuron Type Digital Analog Digital Analog
Routing Hybrid (Async, Sync) Async (AER) Async (Packet) Async (AER)
Latency (in wiring buffers) 1 to 15 time step 5 ns (off) 2.1 ns (on) 0.7 ns (on)
(1 time: 1ms) 4.1 ns/6.5 ns (off) 5 ns (off)
Throughput (Mevent/s) - 32.3 (off) - 606 (on)/59 (off)
Energy for spike transmission (pJ) 2.3 pJ@0.77 V (on) 11 pJ@1 V (off) 1.7 pJ@0.75 V (on) 1.7 pJ@0.9 V (on)
26 pJ@1.8 V (off) 3.5 pJ@0.75 V (off) 3.7 pJ@0.9 V (off)

interface block with power and I/0 efficiency in interchip
communication, utilizing standard digital I/Os with
address-event transceiver block that can change the
direction of communication. It was composed of FIFO
stage and transceiver buffers. Dynap supports 32.3 for
unidirection and 28.6 Mevents/s for bidirection commu-
nication with 5 ns latency. Intel Loihi, using the Proteus
design method for high-performance asynchronous
design, supports intrachip and interchip communications
extending hierarchically in four planar directions to other
chips [27]. It has a latency of 2.1 ns for intrachip commu-
nication, and 4.1 ns in direction of east to west and 6.5 ns
in direction of north to south for interchip communica-
tion. Intel Loihi comprises 128 neural cores, and employs
mesh-type network structure with the packet type with
energy of 1.7 pJ for intrachip and 3.5 pJ for interchip
communication with a 0.75 V supply voltage. This study
uses a hierarchical tree-type network structure support-
ing four SNN cores with AER protocol, achieving the
shortest intrachip latency of 0.7 ns, attributed to the scale
of the networks and optimized routing paths between
SNN cores.

5 | CONCLUSIONS

We proposed an asynchronous interface circuit for non-
linear connectivity in multiple SNN cores. To achieve
asynchronous nonlinear connectivity, an intermediate
latching template is introduced, which reduces cycle time
compared to conventional asynchronous templates. The
arbitration and distribution blocks in the interface circuit
were designed using this template. An interface
circuit that supports multiple SNN cores was designed
with full-custom methods for optimizing all the routing
paths and fabricated in a 28-nm CMOS FDSOI process.
The proposed template enhanced the throughput for
communication by up to 53% compared with the conven-
tional asynchronous template. The interface circuit

achieved a throughput of 606 and 59.2 Mevent/s in intra-
chip and interchip communication respectively and low-
energy consumption of 1.7 and 3.7 pJ for intrachip and
interchip communication at a nominal supply voltage of
0.9 V for one spike transmission. The proposed interface
circuit may enable SNNs to be scaled up to large net-
works with high speed and low energy consumption,
likely enhancing artificial intelligence applications.

ACKNOWLEDGMENTS

This work was supported by the Electronics and Telecom-
munications Research Institute (ETRI) grant funded by
the Korea government (24ZS1230, memory-computation
convergence neuromorphic computing technology).

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID

Sung-Eun Kim @ https://orcid.org/0000-0001-9039-8902
Kwang-Il Oh ‘@ https://orcid.org/0000-0002-8715-7929
Taewook Kang ‘® https://orcid.org/0000-0001-9147-3898

REFERENCES

1. A. Basu, L. Deng, C. Frenkel, and X. Zhang, Spiking neural
network integrated circuits: a review of trends and future direc-
tions (IEEE Custom Integr. Circuits Conf., Newport Beach,
CA, USA), 2022, pp. 1-8.

2. Y. Kuang, X. Cui, Y. Zhong, K. Liu, C. Zou, Z. Dai, Y. Wang,
D. Yu, and R. Huang, A 64k-neuron 64m-1b-synapse 2.64 pj/-
sop neuromorphic chip with all memory on chip for spike-based
models in 65nm CMOS, 1EEE Trans. Circuits Syst. II: Express
Briefs 68 (2021), no. 7, 2655-2659.

3. D. V. Christensen, R. Dittmann, B. Linares-Barranco, A.
Sebastian, M. Le Gallo, A. Redaelli, S. Slesazeck, T.
Mikolajick, S. Spiga, S. Menzel, and 1. Valov, 2022 roadmap on
neuromorphic computing and engineering, Neuromorphic
Comput. Eng. 2 (2022), no. 2, 022501.

4. A.R. Young, M. E. Dean, J. S. Plank, and G. S. Rose, A review
of spiking neuromorphic hardware communication systems,
IEEE Access 7 (2019), 135606-135620.

https://orcid.org/0000-0001-9039-8902
https://orcid.org/0000-0001-9039-8902
https://orcid.org/0000-0002-8715-7929
https://orcid.org/0000-0002-8715-7929
https://orcid.org/0000-0001-9147-3898
https://orcid.org/0000-0001-9147-3898

&LWI LEY-ETRI Journal

5.

10.

11.
12.
13.
14.

15.

16.

17.
18.
19.
20.
21.
22.

23.

KIM ET AL.

S. M. Nowick and M. Singh, Asynchronous design part 1: over-
view and recent advances, IEEE Des. Test 32 (2015), no. 3, 5-18.
H. K. O. Berge and P. Hafliger, High-speed serial AER on FPGA
(IEEE Int. Symp. Circuits Syst., New Orleans, LA, USA), 2007,
pp. 857-860.

A. Lines, P. Joshi, R. Liu, S. McCoy, J. Tse, Y.-H. Weng, and
M. Davies, Loihi asynchronous neuromorphic research chip,
Energy 10 (2018), 15.

M. Mahowald, Visi analogs of neuronal visual processing: a syn-
thesis of form and function, Ph.D. Thesis, California Institute of
Technology, 1992.

X.-G. Guan, X.-Y. Tong, and Y.-T. Yang, Quasi delay-insensitive
high speed two-phase protocol asynchronous wrapper for network
on chips, J. Comput. Sci. Technol. 25 (2010), no. 5, 1092-1100.

J. Spars and S. Furber, Principles asynchronous circuit design,
Springer, 2002.

C. Ding, Y. Huan, H. Jia, Y. Yan, F. Yang, L. Liu, M. Shen, Z.
Zou, and L. Zheng, A hybrid-mode on-chip router for the large-
scale FPGA-based neuromorphic platform, IEEE Trans. Circuits
Syst. I: Regular Papers 69 (2022), no. 5, 1990-2001.

P. J. Zhou, Q. Yu, M. Chen, G. C. Qiao, Y. Zuo, Z. Zhang, Y.
Liu, and S. G. Hu, Fullerene-inspired efficient neuromorphic
network-on-chip scheme, IEEE Trans. Circuits Syst. IT: Express
Briefs 2023 (2023), 1376-1380.

B. Lin, L. Wang, Z. Yang, J. Tie, G. Zhou, and X. Yu, A config-
urable inter-chip connection architecture for multicore neuro-
morphic chip (4th Int. Conf. Frontiers Technol. Inform.
Comput., Qingdao, China), 2022, pp. 928-931.

M. Sadeghi, Y. Rezaeiyan, D. F. Khatiboun, and F. Moradi,
Hardware implementation of a resource-efficient router for
multi-core spiking neural networks (IEEE Int. Symp. Circuits
Syst., Monterey, CA, USA), 2023, pp. 1-5.

S. Ouyang, K. Zhou, H. Jiang, C. Li, J. Liang, F. Zhu, X.
Zhang, and Q. Liu, A scalable area-efficient low-delay
asynchronous AER circuits design for neuromorphic chips,
IEEE Trans. Circuits Syst. II: Express Briefs 2024 (2024),
2804-2808.

A. M. Lines Pipelined asynchronous circuits, Master’s Thesis,
California institute of Technology, 1998.

A. J. Martin, The limitations to delay-insensitivity in asynchro-
nous circuits, Beauty is our business: a birthday salute to Edsger
W. Dijkstra, Springer, 1990, pp. 302-311.

Y. Thonnart, E. Beigné, and P. Vivet, A pseudo-synchronous
implementation flow for WCHB QDI asynchronous circuits
(IEEE 18th Int. Symp. Asynchronous Circuits Syst., Kgs.
Lyngby, Denmark), 2012, pp. 73-80.

C. L. Seitz, System timing, Introduct. VLSI Syst. 1980 (1980),
218-262.

P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer’s guide to
asynchronous visi, Cambridge University Press, 2010.

A. M. T. Linn, C. Shoushun, and Y. K. Seng, Adaptive priority
toggle asynchronous tree arbiter for AER-based image sensor
(IEEE/IFIP 19th Int. Conf. VLSI System-on-Chip, Hong Kong,
China), 2011, pp. 66-71.

S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R.
Douglas, Event-based neuromorphic systems, John Wiley &
Sons, 2014.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, and B.

24.

25.

26.

27.

Taba, Truenorth: Design and tool flow of a 65 Mw 1 million neu-
ron programmable neurosynaptic chip, IEEE Trans. Comput.-
Aided Design Integr. Circ. Syst. 34 (2015), no. 10, 1537-1557.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J.
Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y.
Nakamura, and B. Brezzo, A million spiking-neuron integrated
circuit with a scalable communication network and interface,
Science 345 (2014), no. 6197, 668—673.

N. Qiao and G. Indiveri, A bi-directional address-event trans-
ceiver block for low-latency inter-chip communication in neuro-
morphic systems (IEEE Int. Symp. Circuits Syst., Florence,
Italy), 2018, pp. 1-5.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, and Y. Liao,
LOIHI: a neuromorphic manycore processor with on-chip learn-
ing, IEEE Micro 38 (2018), no. 1, 82-99.

P. A. Beerel, G. D. Dimou, and A. M. Lines, Proteus: an ASIC
flow for Ghz asynchronous designs, IEEE Des. Test Comput. 28
(2011), no. 5, 36-51.

AUTHOR BIOGRAPHIES

Sung-Eun Kim received his
B.S. degree in Electrical & Computer
Engineering from Hanyang Univer-
sity, Seoul, and his M.S. degree in
Electrical Engineering from the
Korea Advanced Institute of Science
and Technology (KAIST), Daejeon,

Republic of Korea, in 2002 and 2004, respectively.
Since March 2004, he has been with the Electronics
and Telecommunications Research Institute (ETRI),
Daejeon, Republic of Korea, where he is currently a
Principal Researcher. He has been primarily involved
in researching analog circuit design for human body
communications, power management of energy har-
vesting systems, and spiking neural networks.

Kwang-I. Oh received his
B.S. degree in Electrical Engineering
e from Kyungpook National Univer-
g sity, Daegu, Republic of Korea, in
\:. ; 2002, and his M.S. and Ph.D. degrees

; A/h in Electrical Engineering from the
Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Republic of Korea,
in 2004 and 2009, respectively. From March 2009 to
February 2015, he was a senior engineer at LX Semi-
con Co., Ltd., Daejeon, Republic of Korea, where he
was involved in the high-bandwidth interface circuits
design for LCD modules. Since March 2015, he has
been with the Electronics and Telecommunications
Research Institute (ETRI), Daejeon, Republic of
Korea, where he is involved in neuromorphic chip

£

KIM ET AL.

ETRI Journal—WI LEYJﬁ

design. His interests include low power analog cir-
cuits, signal integrity, and neuromorphic circuits.

Taewook Kang received his
B.S. and M.S. degrees in Electronics
and FElectrical Engineering from
=R Pohang University of Science and
\-7 Technology, Pohang, Republic of
W7 Korea, in 2005 and 2007, respec-
tively, and his Ph.D. degree from
Chungnam National University, Daejeon, Republic of
Korea in 2023. Since February 2007, he has been with
the Electronics and Telecommunications Research
Institute, Daejeon, Republic of Korea, where he is cur-
rently a Principal Researcher. His research interests
include human body communications, radio channel
modeling, power management of energy harvesting
systems, betavoltaic battery, statistical and adaptive
signal processing, and spiking neural networks.

Sukho Lee received his Ph.D. degree
in Information Communications
Engineering from Chungnam
National University, Daejeon,
Republic of Korea, in 2010. He is cur-
. rently a principal researcher with the

Al Edge SoC Research Section, Elec-
tronics and Telecommunications Research Institute,
Daejeon, Republic of Korea. His current research
interests include ultralow power system-on-chip
design, embedded system design, video codec design,
and video image processing.

Hyuk Kim received his B.S. and

M.S. degrees in Electronic Engineer-

- = ing from Chonnam National Univer-

: :_: sity, Gwangju, Republic of Korea, in
(S 1997 and 1999, respectively. Since
“ August 1999, he has been with the
Electronics and Telecommunications

Research Institute (ETRI), Daejeon, Republic of

Korea, where he is currently a Principal Researcher.
He has been primarily involved in the development of

error-correcting codes for mobile communication
modem. His research interests include error correc-
tion codes, wireless communications, human body
communications, wearable computing systems, and
system on chip (SoC) design.

Mi-Jeong Park received her B.E.,
M.E., and Ph.D. degrees from Hanbat
National University, Daejeon,
Republic of Korea, in 2005, 2007, and
2012, respectively. Since 2012, she
has been with the Electronics and
Telecommunications Research Insti-
tute (ETRI), Daejeon, Republic of Korea, where she is
currently a Senior Engineer. She has been working as
a digital circuit designer. Her research interests
include the embedded software design for hardware
control as well as the digital frontend design for wire-
less and human body communication.

Jae-Jin Lee received his B.S., M.S.,
and Ph.D. degrees in Computer Engi-
neering from Chungbuk National
*odk University, Cheongju, Republic of
v Korea, in 2000, 2003, and 2007,
‘ ‘ respectively. He is currently a Project
Leader with the Low-Power Al

System-on-Chip Design Research Division, Electron-
ics and Telecommunications Research Institute, Dae-
jeon, Republic of Korea. His research interests include
ultralow-power embedded RISC-V processor designs

and event driven neuromorphic computing architec-
tures for brain-inspired spiking deep neural networks.

-
- Fadil 1

How to cite this article: S.-E. Kim, K.-1. Oh, T.
Kang, S. Lee, H. Kim, M.-J. Park, and J.-J. Lee,
Asynchronous interface circuit for nonlinear
connectivity in multicore spiking neural networks,
ETRI Journal 46 (2024), 878-889, DOI 10.4218/
etrij.2024-0135

info:doi/10.4218/etrij.2024-0135
info:doi/10.4218/etrij.2024-0135

