
S P E C I A L I S S U E

XEM: Tensor accelerator for AB21 supercomputing artificial
intelligence processor

Won Jeon | Mi Young Lee | Joo Hyun Lee | Chun-Gi Lyuh

Hyperscale AI SoC Research Section,
Electronics and Telecommunications
Research Institute, Daejeon, Republic of
Korea

Correspondence
Won Jeon, Hyperscale AI SoC Research
Section, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.
Email: jeonwon@etri.re.kr

Funding information
National Research Foundation of Korea,
Grant/Award Number:
2021M3H6A1017683

Abstract

As computing systems become increasingly larger, high-performance comput-

ing (HPC) is gaining importance. In particular, as hyperscale artificial intelli-

gence (AI) applications, such as large language models emerge, HPC has

become important even in the field of AI. Important operations in hyperscale

AI and HPC are mainly linear algebraic operations based on tensors. An AB21

supercomputing AI processor has been proposed to accelerate such applica-

tions. This study proposes a XEM accelerator to accelerate linear algebraic

operations in an AB21 processor effectively. The XEM accelerator has outer

product-based parallel floating-point units that can efficiently process tensor

operations. We provide hardware details of the XEM architecture and intro-

duce new instructions for controlling the XEM accelerator. Additionally, hard-

ware characteristic analyses based on chip fabrication and simulator-based

functional verification are conducted. In the future, the performance and func-

tionalities of the XEM accelerator will be verified using an AB21 processor.

KEYWORD S
artificial intelligence, high-performance computing, neural processing unit, system
verification, tensor computation

1 | INTRODUCTION

Following the ever-increasing demand for high-
performance computing (HPC) and data centers, the
importance of supercomputing processors is increasing.
Advances in HPC have led to advancements in
simulation-based scientific fields, such as molecular
dynamics, climate modeling, computational chemistry,
and astrophysical simulation. Furthermore, the advent of
generative pre-trained transformers (GPTs) has expanded
HPC applications from conventional scientific areas to
hyperscale artificial intelligence (AI) areas. As HPC appli-
cations have become more specialized and compute-
intensive, dedicated accelerators designed for application

characteristics have become more important than
general-purpose central processing units (CPUs). In this
context, domain-specific throughput processors, such as
graphics processing units (GPUs) and neural processing
units (NPUs) have been extensively used in data centers.
Many global groups are developing their own NPU chips
for use in data centers that train and service hyperscale
AI applications. For instance, the NVIDIA Blackwell
B100/B200 GPUs, Google Tensor Processing Unit (TPU),
Graphcore Intelligence Processing Unit (IPU), Tesla D1
processor, and Meta Training and Inference Accelerator
(MTIA) have been developed as domain-specific through-
put processors to increase the computing power of data
centers for hyperscale AI [1].

Received: 24 March 2024 Revised: 12 July 2024 Accepted: 14 August 2024

DOI: 10.4218/etrij.2024-0141

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2024 ETRI

ETRI Journal. 2024;46(5):839–850. wileyonlinelibrary.com/journal/etrij 839

https://orcid.org/0000-0002-5304-2007
mailto:jeonwon@etri.re.kr
https://doi.org/10.4218/etrij.2024-0141
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2


One of the key workloads in both HPC and hypers-
cale AI applications are the linear algebraic computa-
tions, such as matrix-matrix and matrix-vector
multiplications [2, 3]. The artificial brain-21 (AB21) pro-
cessor was proposed by the Electronics and Telecommu-
nications Research Institute (ETRI) to accelerate HPC
and AI applications [4]. In particular, the AB21 processor
efficiently performs tensor computations in these applica-
tions. Computing systems based on AB21 processors con-
sist of various hardware and software components, such
as ARM processors, DDR5 memory interfaces, PCIe inter-
faces, on-chip interconnection networks, an OpenCL
software stack, device drivers, a compiler, and intrinsic
[4–6]. Among the complex system components of AB21
processors, XEM is the main computational module that
performs matrix or vector operations on floating-point
numbers, thereby providing the AB21 processor with pri-
mary Floating-point Operations Per Second (FLOPS)
performance.

In this paper, we present a detailed description of
XEM implementations, including hardware architectures,
computational characteristics, cycle-level timing behavior
analysis, and custom Instruction Set Architecture (ISA)
for XEM. XEM employs a unique computing method,
outer product, to process matrix-matrix multiplica-
tions [7]. Tensor accelerators inside most AI processors
compute matrix multiplications using a systolic array or
an element-wise inner product architecture [1]. With the
outer-product-based architecture, XEM can effectively
reduce the number of data wires for the input matrix
operands. We validate the hardware designs and software
functionalities for the XEM using a software-based archi-
tectural simulation and register-transfer level (RTL) sim-
ulation. In future work, the AB21 processor, including
the XEM modules, will be verified in terms of functional-
ities and performance.

The contributions of this paper are summarized as
follows:

• We propose a novel computing architecture including
an outer-product-based tensor accelerator and provide
detailed explanations of peripheral hardware struc-
tures for the accelerator and their management
techniques.

• Detailed descriptions of functional and timing behav-
iors of the custom ISA for XEM architecture are pro-
vided. The behavior and performance analysis are
conducted based on software-based architectural
simulations.

• The proposed XEM hardware is implemented and
synthesized in the TSMC 12-nm process and the
characteristics of the synthesized XEM modules are
provided.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the characteristics of the tar-
get applications, overall hardware architecture, and
development purpose of the AB21 processor. Section 3
presents the detailed hardware architecture, newly intro-
duced ISA lists, overall execution flow, and scalability of
the XEM accelerator. The experimental results and
design validation data of XEM are described in Section 4.
In Section 5, we introduce related works of XEM and
AB21 and conclude our paper in Section 6.

2 | BACKGROUND

2.1 | HPC and hyperscale AI applications

Conventionally, HPC applications have focused on
simulation-based scientific computations such as molecu-
lar dynamics, climate modeling, and structural mechan-
ics. Although this demand remains in conventional
areas, the role of hyperscale machine learning, such as in
training large language models or autonomous driving,
has recently emerged. Early small transformer models
could be trained using relatively light computing systems
other than the HPC. However, as the scale of the model
increases, as shown in Figure 1, training hyperscale
machine learning models requires HPC and supercom-
puting systems (a few thousand GPUs to train a GPT-4
model) [1, 8, 9]. The core workloads in HPC applications
are linear algebraic computations (e.g., matrix-matrix or
matrix-vector multiplications) for tensor data. Thus, Lin-
pack (or high-performance Linpack) is used to quantify
the performance of HPC and supercomputers [2]. Simi-
larly, training hyperscale machine learning models, such
as GPT, requires massive linear algebraic computations
owing to their huge multi-layer perceptron and attention
operations. In summary, the efficient acceleration of ten-
sor computations is the key to achieving high perfor-
mance in both HPC and hyperscale AI.

F I GURE 1 Total FLOPS for training each transformer model

(bar graph) and a total number of parameters required to train each

model (line graph).

840 JEON ET AL.



2.2 | AB21 supercomputing AI processor

In this paper, we describe the detailed architecture of
XEM, which is a tensor accelerator inside an AB21 pro-
cessor [4]. AB21 is a custom-designed processor special-
ized in accelerating HPC and AI applications, designed
by ETRI as a successor to the AB9 processor [10, 11].

Figure 2 briefly illustrates the overall architecture of
an AB21 processor, and Table 1 lists the abbreviations
used for the hardware components of an AB21 processor.
A single AB21 chip contains six DDR5 and three PCIe5
interfaces for communication outside the processor. To
provide high single-core performance and control the
custom-designed accelerators, two ARM Neoverse V1
(PE) cores are integrated into AB21 [12]. Furthermore,
AB21 achieved a particularly high parallel performance
through eight XEMIS Cluster modules. Nature is a net-
work on chip (NoC) set used to connect computing com-
ponents and interfaces to each other. NoC is a mesh
network built using ARM CMN-700 [13]. The PEs,
XEMIS Clusters, Nature, and other modules constitute
the Earth module. SCP assists the AB21 processor in ini-
tializing and booting the system.

As mentioned previously, XEMIS Clusters are key
modules for the high-throughput performance of AB21.
Figure 3 illustrates the detailed architecture of a single
XEMIS Cluster. It contains a clock, reset, power (CRP)
module, advanced peripheral bus (APB) module, memory
management unit (MMU), and eight XEMIS modules.
Each XEMIS includes four computing modules (XECM),
four AXIC, an AXICS, an AXDCS, and an AXSP. The
XECM and AXIC are dedicated to each other, whereas
the AXICS, AXDCS, and AXSP modules are shared in one
XEMIS module. With the support of the CRP, APB, and
MMU modules, a XEMIS module can operate as an inde-
pendent processing unit, similar to an NVIDIA Streaming
Multiprocessor [14] or AMD Compute Unit [15].

The basic computing module of AB21, XECM, con-
sists of a XEC core and a XEM accelerator. The XEC core
is a RISC-V ISA-based custom processor that performs
general-purpose parallel computations and controls the

F I GURE 2 Illustrative overview of main hardware modules in

the AB21 processor.

TABL E 1 List of abbreviations for AB21.

Abbr. Description

AB21 Artificial Brain-21, an HPC/AI processor developed
by ETRI.

PE Processing Element, an ARM Neoverse V1 core.

SCP System Control Processor, a core that controls AB21
initialization and boot-up process.

XEMIS XElerator for Matrix multiplication with Input data
Sharing, a group of XECM modules.

XEC eXEcution Core, a RISC-V core that control a XEM
module.

XEM XElerator for Matrix multiplication, a tensor
accelerator proposed in this paper.

AXIC Ab21 Xemis Instruction Cache memory, an L0
instruction cache memory.

AXICS AXIC Shared, an L1 instruction cache memory
shared in a XEMIS.

AXDCS Ab21 Xemis Data Cache Shared, a data cache
memory shared in a XEMIS.

AXSP Ab21 Xemis ScratchPad memory, a user-
programmable data memory.

AFPU Ab21 FPU, an FPU top module which includes
DPFU and SFPU.

DFPU Double-precision FPU, an FPU which computes
single FP64 or two FP32 numbers.

SFPU Single-precision FPU, an FPU which computes two
FP32 numbers.

XACC Xem ACCumulate register, a register where
computation results of XEM are accumulated.

XEMIS Cluster

CRP

APB

MMU

XEMIS 0

AXDCS AXSPAXICS

AXIC AXIC AXIC AXIC

XECM

XEC

XEM

XECM

XEC

XEM

XECM

XEC

XEM

XECM

XEC

XEM

XEMIS 3XEMIS 1 XEMIS 2

XEMIS 7XEMIS 5 XEMIS 6XEMIS 4

F I GURE 3 Hardware architecture of a XEMIS Cluster. In

total 32 XEM modules are included in a single XEMIS Cluster.

JEON ET AL. 841



XEM accelerator module. The XEC core supports part of
the RISC-V 64G instruction set [16] and 2-way multi-
thread execution to hide memory latency and efficiently
operate the XEM module. In addition to the native
RISC-V instruction set, we implement several custom
instructions to the ISA. Detailed explanations of
custom instructions are provided in Section 3.3. Each
XECM unit can simultaneously execute different instruc-
tions because of the independent XEC cores and instruc-
tion cache memories. More detailed implementations of
the AB21 hardware architectures and software stacks can
be found in previous works [4–6]. In this paper, we focus
on XEM architecture, which is the main computing
unit that accelerates tensor computations in an AB21
processor.

3 | XEM ARCHITECTURE

As the core computation module inside the ETRI AB21
supercomputing AI processor, we propose a tensor
accelerator architecture named XEM, which efficiently
processes linear algebraic computations in HPC and
hyperscale AI applications. XEM mainly performs outer-
product-based matrix multiplications on two input
vectors, controlled by the RISC-V core. The input vectors
can be 64-bit double-precision floating-point numbers
(FP64) or 32-bit single-precision floating-point
numbers (FP32). The Floating Point Units (FPUs) of
XEM are located close to each dedicated accumulation
register (XACC). In this section, we provide detailed
hardware implementations, ISA functional descriptions,
and execution flow of XEM.

3.1 | Microarchitecture of XEM
accelerator

To perform matrix multiplication operations on the XEM
module, XEC reads the vector operands from AXSP and
fetches them with XEM instructions to the XEM module.
XEM produces incomplete matrix multiplication results
by performing an outer product on two vectors, a row
from matrix A and a column from matrix B. The outer
product is repeatedly computed and accumulated to the
XACC registers to complete a matrix multiplication oper-
ation. Figure 4 illustrates the matrix multiplication pro-
cess and hardware microarchitecture of a XEM module
and its sub-module. In this process, an incomplete result
matrix is stored near FPUs, imposing a large size require-
ment for XACC. Furthermore, owing to the nature of the
outer-product method, the required memory size for stor-
ing the incomplete result matrix increases in proportion
to the square of the size of the input vector. For instance,
while operands for FP32 operations can be fetched with
the same memory interface as FP64 operations, the
required XACC capacity for FP32 results is doubled, thus
XACC 1 and 2 are not used in FP64 mode, as shown in
Figure 4.

As shown in the figure, the XEM module has
16 AFPUs (or AB21 FPU) to compute the floating-point
operations. The AFPUs in the XEM are implemented in a
4�4 configuration. The 64-bit fractions of the fetched
vector operands are broadcasted to the corresponding
rows or columns (e.g., A[63:0] to AFPU 0, 4, 8, and C,
and B[255:192] to AFPU C, D, E, and F). The 64-bit input
operand can be a single FP64 number or two vectored
FP32 numbers. Once an AFPU module receives the

XEM

AXSP

XEC

A
[2

5
5

:0
]

2
5

6
-b

it

B
[2

5
5

:0
]

2
5

6
-b

it

XEM instruction

XEM operands

256-bit 2

A [255:192]A [63:0] A [127:64] A [191:128]

B
 [

6
3

:0
]

B
 [

2
5

5
:1

9
2

]
B

 [
1

9
1

:1
2

8
]

B
 [

1
2

7
:6

4
]

AFPU_0 AFPU_1 AFPU_2 AFPU_3

AFPU_4 AFPU_5 AFPU_6 AFPU_7

AFPU_8 AFPU_9 AFPU_A AFPU_B

AFPU_C AFPU_D AFPU_E AFPU_F

XEM CSRs
AFPU

FP64 mode

XACC register

XACC_0

[31:0]

XACC_1

[31:0]

XACC_2

[31:0]

XACC_3

[31:0]

D[31:0]

D[63:32]

FP32 mode

XACC_0

[31:0]

XACC_1

[31:0]

XACC_2

[31:0]

XACC_3

[31:0]

DFPU

[63:0]

[63:0]

DFPU

[63:32] [31:0]A

B [63:32] [31:0]

A

B

SFPU

SFPU

[63:32] [31:0]

[31:0] [63:32]

D[31:0]

D[63:32]

S[31:0]

S[63:32]

XMSK_0 [63:0]

XMSK_1 [63:0]

XDT   [2:0]

XFCSR   [6:0]

ELPR_CNT   [4:0]

Incomplete results in XACCs

F I GURE 4 Overall architectures of XEM accelerator and the matrix multiplication method for XEM. AFPU is the arithmetic sub-

module of XEM, performing one FP64 operation or four FP32 operations at a time. A single XEM module includes 16 AFPUs in a 4�4

configuration. Computation results are stored in XACC registers located inside each AFPU. A XEM MAC operation generates an incomplete

matrix output with outer product operation.

842 JEON ET AL.



64-bit operands A and B, it can compute one FP64 or four
(2�2) FP32 operations. The types of supported opera-
tions include addition, subtraction, multiplication, and
multiply-accumulate (MAC) operations between oper-
ands A and B. Further details on the supported opera-
tions are provided in Section 3.3. Consequently, when all
AFPUs are active, a XEM module can compute 4�4
FP64 or 8�8 FP32 operations using the given input
operands.

In the XEM module, several control and status regis-
ters (CSRs) are used to control the XEM operations and
store the statuses of the XEM module. Most XEM CSRs
can be accessed and modified by the XEC core with
custom instructions. The list of XEM CSRs and their
functions is as follows:

• XMSK: XEM masking register. Each bit of the register
turns on or off the FPUs of XEM, thus when an FPU is
masked, all arithmetic operations are ignored for the
corresponding FPU.

• XDT: XEM data type register. XDT stores the data type
(e.g., FP64 or FP32) information of the XACC register.

• XFCSR: XEM floating point control and status
register. The lower 4 bits of XFCSR represent floating
point flags and the upper 3 bits are used to store the
rounding mode of XEM FPUs.

• ELPR_CNT: Cycle counter register for the end loop
pipeline reduction (ELPR) operation.

For the XMSK register, only the lower 16 bits are
used to represent 4�4 FPUs in the case of FP64 mode,
whereas all 64 bits are used in the case of the FP32 mode.
The XEM module has two XMSK registers to support the
2-way multithread of the XEC core. The detailed XMSK
register indexing method is presented in Section 3.3. XDT
is updated when the XACC register changes, for example,
by performing AFPU operations or by directly updating
the XACC register using the XEC core. The floating-point
flags of XFCSR represent unexpected operations such
as invalid operation, overflow, underflow, and inexact
operation. When these operations occur during XEM
computations, the corresponding bits are updated, and
XEC can read the XFCSR with a custom instruction.
Division by zero is not used because XEM does not sup-
port the division operation on input operands or XACC
registers. For the rounding mode, XEM supports RISC-V
standard rounding modes, such as round to nearest, ties to
even, round towards zero, round down, round up, and
round to nearest, ties to maximum magnitude [16].
XEC can access and update the rounding mode part of
XFCSR with custom RISC-V instructions to change the
rounding mode of XEM. ELPR_CNT register cannot be
accessed by the XEC core and is used only inside the

XEM module to control the ELPR process. A detailed
description of the ELPR process is provided in the
following section.

3.2 | Implementation details of AFPU

An AFPU computes the floating-point operations and
stores the computation results inside the module, as
shown on the right part of Figure 4. The AFPU module
can take two 64-bit operands at a time and includes a
double-precision FPU (DFPU), single-precision FPU
(SFPU), and XACC register. When the AFPU computes
FP64 data, the DFPU processes the computation, divides
the 64-bit result into two 32-bit data, and stores them in
XACC 0 and 3. In FP64 mode, SFPU, XACC 1, and 2 are
inactive, thus XACC 1 and 2 hold the existing data. On
the other hand, when the input data are in FP32 format,
all DFPU, SFPU, and XACC are used. Two FP32 num-
bers are concatenated in each of the 64-bit A and B
inputs. Owing to the vectored computation feature
[17–19], both DFPU and SFPU can compute two floating-
point operations in parallel and store the results in
XACC. For SFPU, 32 bits of MSB and LSB are swapped
to support the fully connected computations among the
concatenated two A and B inputs, and the computation
results of SFPU are stored in XACC 1 and 2. Combining
DFPU and SFPU, one AFPU can perform four floating-
point operations at once in FP32 mode.

Generally, arithmetic operations on high-precision
floating-point numbers, such as FP64 and FP32, require
several cycles to meet nano second-level frequency tim-
ing [17–19]. The target frequency of the AB21 processor
and XEM accelerator is 1 GHz. To meet the timing
requirements, both DFPU and SFPU are implemented
with 4-staged pipeline FPUs. As a result, the latency of
arithmetic operations on DFPU and SFPU is 4 cycles for
all types of computations.

The pipeline latency of an FPU can cause data depen-
dency and hazard problems. Unlike general processors,
AFPU has a fixed output path from an FPU to XACC
registers. Thus, it cannot solve the dependency of XACC
registers by register renaming. Among XEM computations,
addition, subtraction, and multiplication do not use XACC
as operands. XEC simply blocks other XEM instructions
when such operations are being executed. On the other
hand, a MAC operation causes an XACC dependency
issue because it accumulates a multiplication result to
XACC (XACC¼A�BþXACC). Furthermore, because
MAC is the key operation in matrix multiplications, pro-
cessing a MAC operation for every cycle is important. To
this end, we implement intermediate registers, named
pipeline registers (PREG), between FPUs and XACCs to

JEON ET AL. 843



store temporary results as shown in Figure 5. Each XACC
register has four PREGs because the FPUs have 4-staged
pipelines, thus the number of PREGs can be changed
depending on the number of pipeline stages. When XEM
processes consecutive MAC operations, DFPU (or SFPU)
reads the contents of PREG and performs a Fused
Multiply-Add (FMA) operation on PREG, A, and B in
every cycle. The accessed PREG index increases at every
cycle from 0 to 3 in a round-robin manner. After each
MAC operation is completed, the operation results are
stored back to the point at which the PREG was read.

After a series of MAC operations are completed, the
partial sums of the final results are stored in multiple
PREGs. To obtain the complete MAC result, the distrib-
uted partial sums must be accumulated into one register.
XEM performs the reduction process, named ELPR after
a loop of MAC operations ends. ELPR is a custom signal
between XEC and XEM, not a RISC-V instruction. XEC
automatically issues an ELPR command to XEM after a
loop of MAC operations is completed. During the ELPR
process, DFPU (or SFPU) sequentially accumulates
between the numbers stored in XACC and multiple
PREGs. The loops of the MAC and ELPR processes can
be separated because the addition of MAC operations
does not require orders. The process requires multiple
cycles, and XEC cannot fetch other XEM instructions
during the process because all FPUs and registers in the
XEM module are busy. After the ELPR process is com-
pleted, XACCs have the complete results of the MAC
operations, thus XEC can access XACCs to get the com-
putational results. Furthermore, all PREGs are reset to
zero at the end of the ELPR process.

The unique implementations of the distributed
PREGs and ELPR processes enable the execution of MAC

operations in every cycle, thus improving the throughput
of the FPUs. In addition, they can solve the swamping
issue that occurs when many floating-point numbers
accumulate [20]. As MAC operations continue, the accu-
mulated results may become so large that adding small
numbers will have no effect. The PREG implementation
of AFPU alleviates this problem by storing results in mul-
tiple distributed registers.

3.3 | RISC-V instructions for XEM

As mentioned previously, the proposed XEM accelerator
is controlled by a XEC core, which is a RISC-V ISA-based
custom core. We extend the existing RISC-V ISA to
include new custom instructions for controlling the XEM.
Figure 6 presents the bit formats of the five new RISC-V
instructions for XEM, XMM, ALS, AAS, XFRCSR/
XFSCSR, and MSK. Programmers can accelerate various
linear algebraic computations, access the computation
results, and handle arithmetic details (e.g., floating-point
rounding mode, flags, and masking) using the instruc-
tions. Although we implement system software support,
intrinsic functions, and library support for AB21 and
XEM [5, 6], we focus on the hardware-oriented behaviors
of the new instructions in this study.

3.3.1 | XMM

XMM is the main computational instruction for XEM.
When XEC executes the instruction, XEC decodes the
memory addresses for operands A and B using RS1, RS2,
and RS3, and then accesses AXSP using the address. After

AFPU

DFPU

XACC_3
PREG_0

[31:0]

PREG_1

[31:0]

PREG_2

[31:0]

PREG_3

[31:0]

XACC_0
PREG_0

[31:0]

PREG_1

[31:0]

PREG_2

[31:0]

PREG_3

[31:0]

SFPU

XACC_1
PREG_0

[31:0]

PREG_1

[31:0]

PREG_2

[31:0]

PREG_3

[31:0]

XACC_2
PREG_0

[31:0]

PREG_1

[31:0]

PREG_2

[31:0]

PREG_3

[31:0]

[63:32]

[31:00]

[63:32]

[31:00]

4 4 Pipeline Registers 

F I GURE 5 Register architectures of an AFPU module.

Distributed pipeline registers can improve the throughput of FPUs

and the accuracy of accumulated results.

F I GURE 6 New extended instruction formats to the existing

RISC-V ISA to control the XEM accelerator.

844 JEON ET AL.



the data arrive, XEC fetches the instruction to XEM along
with the operands. Detailed explanations of the bit fields
are provided below:

• OP: Operation mode of XMM; 00 for addition, 01 for
subtraction, 10 for multiplication, and 11 for MAC.

• AM: Address mode when accessing AXSP from XEC.
When the field is 0, XEC uses the 64-bit absolute
values stored in RS1 and RS2. Conversely, when AM is
1, XEC calculates the target memory addresses using
RS1, RS2, and RS3.

• RO: Register operand for operand B. When the field is
1, operand B is not loaded from AXSP but from the
register file of the XEC core.

• AO: XACC operand for operand A. When the field is
1, each AFPU uses its XACC as operand A.

• MSK: Enables masking mode. FPUs in the XEM are
turned on/off according to the XMSK register when
the field is 1.

• RS1,2,3: Register source indices. RS1 and RS2 store the
memory addresses of operands A and B, and RS3
stores the memory address offset for operands A
and B.

• DT: XMM data type; 000 for FP64, 001 for FP32, and
others are reserved for futures uses.

When the AM field is 1 (relative addressing mode),
RS3 stores memory offsets for operands A and B by divid-
ing the 64-bit register into two 32-bit values, thus the tar-
get addresses for A and B are calculated as follows:
A¼RS1þRS3½31 : 0�,B¼RS2þRS3½63 : 32�. In the rela-
tive addressing mode, XEC can perform repeated XMM
operations without redundant address calculations. In
the RO mode case, the XEM module copies and concate-
nates the 64-bit or 32-bit operands to make a 256-bit
vector operand B. Note that the effects of AM, RO, AO,
and MSK are independent and can be turned on at the
same time.

3.3.2 | ALS and AAS

After XMM operations are completed, the computational
results are stored in XACC inside the XEM module. To
process the results and read them from RISC-V pro-
grams, the contents of XACC need to be transferred to
XEC register files or AXSP. However, XACC may need
to be initialized with certain values before the main
XEM computation begins. For this purpose, ALS and
AAS instructions are used to read or write XACC in
XEM modules. Furthermore, ALS accesses a single ele-
ment at a time, whereas AAS accesses all XACCs over
multiple cycles.

In the bit field of the ALS instruction shown in
Figure 6, the LS field selects the data movement direction
(load or store); for the 0 case, a data in XACC is moved to
XEC’s floating-point register, and for the 1 case, vice
versa. In the transfer process, SDT and DDT determine
the data types of the source and destination (XACC or
XEC register), and the RM field selects the rounding
mode for possible data type conversion. RS1 and RD store
the target memory address or XACC index introduced in
Figure 7.

The AAS instruction can write all XACC registers
using data from the memory space (load), move all
XACC contents to the memory space (store), or set all
XACC registers with a single value (set). The operation
mode is selected using an LSS field (00: load, 01: store,
and 10: set). The DT field determines the data type, and
RS1 and RD store the target memory address or source
register number, respectively. The DI field turns the diag-
onal mode on or off for AAS load and AAS store. When
the diagonal mode of AAS is turned on, the instruction
does not access all XACCs, but only the diagonal part
from the top left to the bottom right (only 0, 5, 10, and
15 XACCs in FP64 mode in Figure 7).

Using AAS instructions, redundant XEC instructions
can be significantly reduced, as shown in Figure 8. The
detailed evaluation environment for the figure is intro-
duced in Section 4. Each execution of ALS instructions
requires several instructions to calculate the register
index of XACC or to control branches, whereas an AAS
instruction does not. As a result, the use of AAS instruc-
tions can remove 77.79% of XEC’s computing
instructions, thus reducing 38.42% of the total instruction
count from the same GEMM kernel.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

A[0] A[255]

B
[0

]
B

[2
5

5
]

0,0 0,1 1,0 1,1 2,0 2,1 3,0 3,1

0,2 0,3 1,2 1,3 2,2 2,3 3,2 3,3

4,0 4,1 5,0 5,1 6,0 6,1 7,0 7,1

4,2 4,3 5,2 5,3 6,2 6,3 7,2 7,3

8,0 8,1 9,0 9,1 A,0 A,1 B,0 B,1

8,2 8,3 9,2 9,3 A,2 A,3 B,2 B,3

C,0 C,1 D,0 D,1 E,0 E,1 F,0 F,1

C,2 C,3 D,2 D,3 E,2 E,3 F,2 F,3

User’s matrix view XEM’s AFPU,XACC index view

FP32

mode

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

A[0] A[255]

B
[0

]
B

[2
5

5
]

A[0] A[255]

B
[0

]
B

[2
5

5
]

0,0 1,0 2,0 3,0

4,0 5,0 6,0 7,0

8,0 9,0 10,0 11,0

12,0 13,0 14,0 15,0

A[0] A[255]

B
[0

]
B

[2
5

5
]

FP64 

mode

MG[0]

MG[1]

MG[2]

MG[3]

No masking 

group

F I GURE 7 Indexing policy and masking group of XACC in

16 AFPUs in a single XEM module. We assume the raster scanning

method for the user’s matrix view. The indexing method is used in

ALS, AAS, and MSK instructions.

JEON ET AL. 845



3.3.3 | XFCSR read and store

As mentioned in Section 3.1, XFCSR includes floating-
point flags and the rounding mode of XEM FPUs. The
XEC core can read the XFCSR to check whether unex-
pected floating-point operations have occurred or store
it to set a policy in the rounding mode. The RS field
determines the read or store operation on the XFCSR.
When the XFCSR is read, data of the XFCSR are writ-
ten to the XEC register pointed to by the RD field.
Conversely, to store the XFCSR with specific values,
XEC stores a 7-bit value in a XEC register in advance
and designates that register as RS1 of the XFSCSR
instruction.

3.3.4 | MSK

Depending on the application, users may want to turn
computations on or off for specific elements of the
matrix. XMSK registers in a XEM module and stores bit
vectors that determine whether the corresponding FPUs
are turned on or off. For a XEM module, 16 FP64 or
64 FP32 FPUs can be used. Thus, a XMSK register can
store a 64-bit vector. Using MSK instructions, the XEC
core can manipulate the XMSK register in the XEM mod-
ule. The MSK instruction has two modes determined by
the 13th bit: indirect and immediate, as shown in
Figure 6. In indirect mode, a 64-bit masking bit vector is
stored in a XEC core register designated by the RS1 field.
Although this mode requires an additional step to store
the bit vector in the register, all the 64 bits can be fetched
using a single MSK instruction. In the immediate mode,
the masking bit vector is stored in the MSK instruction
during the compile time. Owing to the limitation of the
instruction length, a single MSK immediate instruction
holds only a 16-bit masking vector. To control all 64 FPUs
with the MSK immediate instruction, we define masking
groups as depicted in Figure 7.

3.4 | Scalability of the XEM accelerator

As depicted in Figures 2 and 3, an AB21 processor
includes eight XEMIS clusters, a XEMIS cluster has eight
XEMIS modules. There are four XECM modules per
XEMIS module, implementing 256 XECM modules in
the AB21 processor. Therefore, a single AB21 processor
can execute 256 RISC-V XEC cores in parallel. To control
these parallel cores, RISC-V kernel codes can be pro-
grammed in the OpenCL format [6] as shown in
Figure 9. Two ARM Neoverse V1 cores (PEs) deliver
RISC-V kernels to XEC cores, and each XEC core exe-
cutes the assigned kernel. Because one XEM module can
perform 16 FP64 or 64 FP32 floating-point operations per
cycle, one AB21 processor can perform 4,096 FP64 or
16,384 FP32 operations (addition, subtraction, multiplica-
tion, or MAC) per cycle.

4 | EVALUATION

4.1 | Methodology

We developed software-based simulation environments
to evaluate the sketching performance and functionali-
ties of the AB21 processor and XEM accelerator [6].
Specifically, architectural simulations of the AB21 pro-
cessor and XEM accelerator were conducted using
AXPUSIM. AXPUSIM exploits Multi2Sim [21] and
Spike [22] as baseline simulators to model ARM proces-
sors (PE) and RISC-V cores (XEC), respectively. Fur-
thermore, because the Spike simulator has no
performance models, AXPUSIM adds timing models to
the baseline model. Detailed architectural modules,
interconnection networks, memory models, and ISA are

F I GURE 9 An example OpenCL kernel code for using XEM

accelerator including intrinsic functions for XMM instruction.

0

1000

2000

3000

4000

L
O

A
D

S
T

O
R

E

L
O

A
D

_
F

P

S
T

O
R

E
_
F

P

L
U

I

A
M

O

M
IS

C
_

M
E

M O
P

O
P

_
F

P

O
P

_
3
2

O
P

_
IM

M

O
P

_
IM

M
_
3
2

M
A

D
D

M
S

U
B

N
M

A
D

D

N
M

S
U

B

B
R

A
N

C
H

JA
L

R

JA
L

S
Y

S
T

E
M

A
U

IP
C

X
-X

M
M

X
-A

L
S

X
-L

/M
S

K

X
-A

S
U

X
-C

V
T

X
-S

Y
N

C

X
-F

L
S

T
o
ta

l

tnuo
C noitcurtsnI

ALS AAS

F I GURE 8 Instruction count comparison of FP32 GEMM

kernel using ALS or AAS instruction, respectively (X: XEM

instructions, others: original RISC-V ISA).

846 JEON ET AL.



implemented in the simulator. The simulation parame-
ters for AXPUSIM related to the XEM accelerator are
shown in Table 2. We evaluated various configurations
of the AB21 processor using 70 test benchmark

applications programmed to exploit the AB21 processor,
including XEM accelerators. Figure 10 shows the distri-
bution of instruction counts for the target benchmark
applications. Although these applications are not exten-
sively used, they have been developed to test the AB21
processor and XEM accelerator, and include essential
linear algebraic computations, such as general matrix–
matrix multiplication (GEMM), matrix–vector multipli-
cation (GEMV), and AXPY.

4.2 | Performance and scalability

Figure 11 shows the normalized speedups of each
hierarchical computing module (XECM, XEMIS, XEMIS
Cluster, and AB21) for the 70 test applications. We define
the normalized speedup as the relative ratio of the execu-
tion times between a target module and XECM. We can
see that there is a significant difference in performance
scalability depending on the application and a high corre-
lation between the instruction count and scalability. Note
that XEMIS, XEMIS Cluster, and AB21 have theoretical
performances that are �4, �32, and �256 greater than
that of XECM, respectively. In small applications, it is
difficult to observe the effects of scalability and parallel
computing. In future work with the fabricated AB21 chip,
the XEM accelerator will be tested with more compute-
intensive benchmark applications.

As shown in the figure, we create groups of four
according to the instruction count and scalability, and
the average performance of each group is listed in
Table 3. Most GEMM benchmarks are in group 1 which
has the highest scalability. In particular, GEMM tests,
which are the main targets of the XEM accelerator, show
70 to 93 relative speedups in AB21 compared with
XECM. Group 2 includes GEMV tests that still exhibited

TAB L E 2 Simulator parameters for AB21 and XEM.

Parameters Value

Core clock frequency 1000 MHz

PEs/AB21 2

XEMIS Clusters/AB21 8

XEMIS/XEMIS Cluster 8

XECM/XEMIS 4

AXICS/XEMIS 16 KB, 2-way

AXDCS/XEMIS 128 KB, 4-way

AXSP/XEMIS 256 KB

Threads/XEC 2

AXIC/XEC 2 KB, direct-mapped

FP64 FPUs/XEM 16

FP32 FPUs/XEM 64

XACC/XEM 256 B

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 10 20 30 40 50 60 70

tnuo
C noitcurtsnI

Test Application

F I GURE 1 0 Distribution of the total number of instructions

in the test applications in log scale (in descending order by the

number of instructions).

0

5

10

15

20

25

30

35

40

m
ps

_
4

6f
_

m
me

g
_

m
m

x

x
m

m
_

g
em

m
_

f6
4 bcac

_
4

6fc
_

m
me

g
_

m
m

x

x
m

m
_

im
2

co
l_

f6
4

x
m

m
_

g
em

m
_

cf
6
4

x
m

m
_

a_
ad

d
_

f3
2

x
m

m
_

lo
o

p
_

im
m

_
f6

4

x
m

m
_

lo
o

p
_

in
d
_

f6
4

x
m

m
_

g
em

v
_

f6
4

_
sp

m

x
m

m
_

g
em

v
_

cf
3
2

x
m

m
_

g
em

v
_

cf
6
4

x
m

m
_

g
em

v
_

f6
4

x
m

m
_

rr
o
_

f6
4

x
m

m
_

rr
o
ao

_
f6

4

x
m

m
_

ra
o
_

f6
4

x
m

m
_

a_
f6

4

x
m

m
_

aa
o

_
f6

4
_

sp
m

x
m

m
_

aa
o

_
f6

4

x
m

m
_

ar
o
_

f6
4
_

sp
m

x
m

m
_

ar
o
_

f6
4

x
m

m
_

ar
o
ao

_
f6

4

x
m

m
_

el
tm

m
_

cf
6

4

x
m

m
_

el
tm

m
_

m
ac

_
cf

6
4

x
m

m
_

m
p

m
_

cf
6
4

_
ca

cb

x
m

m
_

el
tm

m
_

f6
4

x
m

m
_

el
tm

m
_

m
ac

_
f6

4

x
m

m
_

m
p

m
_

cf
6
4

x
m

m
_

m
p

m
_

f6
4

x
m

m
_

lo
o

p
_

im
m

_
f3

2

x
m

m
_

rr
o
_

f3
2

x
m

m
_

rr
o
ao

_
f3

2

x
m

m
_

ar
o
_

f3
2

x
m

m
_

g
em

m
_

cf
3
2

x
m

m
_

ra
o
_

f3
2

x
m

m
_

a_
f3

2

x
m

m
_

aa
o

_
f3

2

x
m

m
_

g
em

m
_

cf
3
2

_
ca

cb

x
m

m
_

ar
o
ao

_
f3

2

x
m

m
_

ar
o
_

f3
2
_

sp
m

x
m

m
_

el
tm

m
_

cf
3

2

x
m

m
_

el
tm

m
_

m
ac

_
cf

3
2

x
m

m
_

lo
o

p
_

in
d
_

f3
2

x
m

m
_

m
p

m
_

cf
3
2

_
ca

cb

x
m

m
_

el
tm

m
_

f3
2

x
m

m
_

el
tm

m
_

m
ac

_
f3

2

x
m

m
_

m
p

m
_

cf
3
2

x
m

m
_

m
p

m
_

f3
2

x
m

m
_

g
em

m
_

f3
2

_
sp

m

x
m

m
_

g
em

m
_

f3
2

_
sp

m
_
fp

g
a

x
m

m
_

a_
cf

6
4

x
m

m
_

a_
m

ac
_

cf
6

4

x
m

m
_

a_
m

u
l_

cf
6
4

x
m

m
_

r_
f6

4

x
m

m
_

aa
o

_
cf

6
4

x
m

m
_

ar
o
_

cf
6

4

x
m

m
_

ar
o
ao

_
cf

6
4

x
m

m
_

a_
cf

3
2

x
m

m
_

a_
m

ac
_

cf
3

2

x
m

m
_

a_
m

u
l_

cf
3
2

x
m

m
_

ar
o
_

cf
3

2

x
m

m
_

ar
o
ao

_
cf

3
2

x
m

m
_

aa
o

_
cf

3
2

x
m

m
_

ax
p
y

_
cf

3
2

_
ca

x
m

m
_

ax
p
y

_
cf

6
4

_
ca

x
m

m
_

ax
p
y

_
cf

3
2

x
m

m
_

ax
p
y

_
cf

6
4

x
m

m
_

ax
p
y

_
f3

2

x
m

m
_

ax
p
y

_
f6

4

x
m

m
_

g
em

v
_

f3
2

_
sp

m

x
m

m
_

a_
ad

d
_

f6
4

G
eo

 M
ea

n

pudeepS dezila
mro

N

XECM XEMIS XEMIS Cluster AB2170.3

Group 1 Group 2 Group 3 Group 4

93.0

F I GURE 1 1 Normalized speedups of a XECM, XEMIS, XEMIS Cluster, and AB21 processor on 70 test applications. Execution times

are normalized to XECM. Applications are sorted by the total number of instructions showed in Figure 10.

JEON ET AL. 847



high parallelism. Finally, many AXPY tests are included
in group 4, which show very low speedups. According to
the results, element-wise vector computations in AXPY
are not effectively processed using the XEM accelerator.
Despite the diagonal computation support introduced in
Section 3.3, the arrays of FPUs are severely underutilized
for AXPY computations. Reaching theoretical perfor-
mance increase by �256 by further optimizing the soft-
ware and computing algorithm for XEM is critical for
utilizing the AB21 processor.

4.3 | Hardware characteristic

The XEM accelerator and AB21 processor are designed,
synthesized, and fully fabricated using the TSMC 12-nm
process, as shown in Figure 12. The target die size of an
AB21 chip is 26000�28000μm2, and its expected
power consumption is listed in Table 4. The table lists
the power consumption of each block, as shown in
Figure 2. Note that the Universe block contains SCP but
does not include DDR and PCIe modules. The power
consumption of PEs, XEMIS Clusters, and Nature NoC
are included in the Earth block. Because the Earth block
has the most computational units, it consumes nearly
85% of the total power.

According to the operating frequency analysis,
820 MHz can be achieved in the worst case, 945 MHz in
the typical case, and 1118 MHz in the best case. When
synthesizing the XEM module separately, we observed
that there was no negative slack for a clock period of
0.6 ns across the four staged FPU pipelines, allowing
XEM to comfortably achieve an operating frequency of
1 GHz. With 4096 FP64 or 16 384 FP32 effective FPUs
and the best-case frequency scenario, 4.58 TFLOPS
(�1012 FLOPS) on FP64 numbers or 18.32 TFLOPS FP32
numbers can be achieved theoretically. In particular, as
the XEM accelerator supports one-cycle processing for
the MAC (a combination of multiplication and addition)
computation, consecutive MAC operations can be
processed using the entire throughput rather than half
(e.g., 4.58 or 18.32 �1012 FMAs per second for FP64 and
FP32, respectively).

5 | RELATED WORK

To the best of our knowledge, XEM is the first tensor
accelerator implemented in large-scale chip fabrication
that computes matrix multiplications using the outer
product method. XEM aims to provide high-performance
matrix multiplication for an AB21 supercomputing AI
processor. Similarly, the systolic tensor core (STC) in an
AB9 processor targets the acceleration of matrix multipli-
cation [10]. Furthermore, Chung et al. proposed a
dynamic frequency scaling technique to improve the per-
formance and save energy of the AB9 processor [11]. STC
in the AB9 processor is a systolic-array-based tensor
accelerator that is significantly different from XEM in the
AB21 processor. Furthermore, the AB9 processor primar-
ily targets the acceleration of the convolutional neural
network-based vision applications, while the AB21 pro-
cessor’s target applications are HPC and hyperscale
AI. Nevertheless, after the AB21 processor’s chip fabrica-
tion and packaging are completed, performance compari-
sons between AB9 and AB21 can be conducted.

With the advent of LLM applications, many supercom-
puting AI processors have been introduced in industrial
fields [1]. NVIDIA recently proposed the Blackwell GPU
architecture, B100 and B200 GPUs [23]. NVIDIA GPUs
exhibit specialization in training hyperscale AI models such
as LLM by exploiting their high tensor processing perfor-
mance enabled by Tensor Cores. Google developed the 5th
generation of the TPU, which is extensively used in its data
centers for training the LLM and deep learning

TAB L E 3 Geometric means of the normalized speedup of each

group and all applications.

Group # XECM XEMIS Cluster AB21

1 1 3.61 12.07 38.36

2 1 3.29 10.23 14.19

3 1 2.90 7.40 7.36

4 1 1.46 1.55 1.56

Total 1 2.46 5.14 6.44

F I GURE 1 2 Floorplan for an AB21 processor (A) and die

wafer photo of AB21 processor chips (B).

TABL E 4 Expected power consumption of an AB21 processor

according to the back-end process.

Block name
Power consumption
(W)

Relative
power (%)

Universe 0.6 0.15

Earth 349.6 84.69

DDR5 �6 39.9 9.67

PCIe5 �3 22.7 5.50

Total 412.8 100.00

848 JEON ET AL.



recommendation model (DLRM) [24]. TPU features a
systolic-array-based computing architecture similar to that
of the STC in AB9. Graphcore introduced the MK2 IPU, a
processor that utilizes high on-chip memory capacity and
possesses advanced inter-node data connectivity technolo-
gies [25]. Meta also proposed the MTIA for use in data
centers to support various AI applications, including
DLRM [26]. Furthermore, many AI chips have been pro-
posed as accelerators for data centers and supercomputing,
including AMD Machine Intelligence 300 (or MI300) [15],
Intel Gaudi-3 [27], Tesla D1 [28], FuriosaAI Renegade [29],
Rebellions REBEL [30], SAPEON X330 [31], and Cerebras
Wafer-Scale Engine-3 (or WSE-3) [32]. Because processors
were proposed to accelerate AI applications, most support
computations on low-precision floating-point numbers.
Among the introduced accelerators, only GPUs of NVIDIA
or AMD support high-performance computations on FP64
tensors, whereas the proposed XEM for the AB21 processor
also provides such high-precision computations.

6 | CONCLUSION

As the demand for HPC and hyperscale AI training
continues to increase, the demand for high-performance
processors that can accelerate large linear-algebraic com-
putations is also increasing. In this paper, we introduce
in detail the hardware structures, operation methods,
and newly added instructions for the XEM accelerator,
which is the core computational unit in the AB21 proces-
sor developed to meet these demands. XEM performs
matrix multiplication operations based on outer products
and operates under the control of RISC-V cores. In this
study, we demonstrate the feasibility of high-performance
XEM accelerators and guide future users of AB21 proces-
sors to optimize their performance.

ACKNOWLEDGMENTS
This work was supported by the Supercomputer
Development Leading Program of the National Research
Foundation (NRF) funded by the Korea government
(MSIT) (2021M3H6A1017683, Supercomputer Processor
Research and Development).

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Won Jeon https://orcid.org/0000-0002-5304-2007

REFERENCES
1. W. Jeon and C.-G. Lyuh, Technical trends in hyperscale artifi-

cial intelligence processors, Electron. Telecommun. Trends 38
(2023), no. 5, 1–11.

2. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,
Linpack users’ guide, Vol. 8, SIAM, 1979.

3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all you
need, Adv. Neural Inform. Process. Syst. 30 (2017), 1–11.

4. C. G. Lyuh, B. J. Kim, C. Kim, H. Kim, K. H. Park, J. H. Suk, K.
Shin, M. Y. Lee, J. H. Lee, and W. Jeon, Supercomputer SoC
design and verification/FPGA platform development, (Summer
Annu. Conf. IEIE, Jeju, Republic of Korea), 2023, pp. 2732–2734.

5. C. Kim, J. H. Suk, S. Jun, and C.-G. Lyuh, Porting linux on an
FPGA board for ARM64 SoC test, (Fall Annu. Conf. IEIE,
Gwangju, Republic of Korea), 2022, pp. 125–127.

6. M. Y. Lee, J. H. Lee, and C.-G. Lyuh, Intrinsic functions, librar-
ies, and test application environment for accelerated parallel
computing in matrix and vector operations, (Fall Annu. Conf.
IEIE, Seoul, Republic of Korea), 2023, pp. 363–365.

7. W. Jeon, Y. C. P. Cho, H. M. Kim, H. Kim, J. Chung, J. Kim,
M. Lee, C.-G. Lyuh, J. Han, and Y. Kwon, M3FPU: Multifor-
mat matrix multiplication FPU architectures for neural net-
work computations, (IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems, Incheon, Rep. of
Korea), 2022, pp. 150–153.

8. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L.
Aleman, D. Almeida, J. Altenschmidt, S. Altman, and S.
Anadkat, Gpt-4 technical report, 2023. https://doi.org/10.
48550/arXiv.2303.08774

9. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P.
Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, and A. Askell,
Language models are few-shot learners, Adv. Neural Inform.
Process. Syst. 33 (2020), 1877–1901.

10. Y. C. P. Cho, J. Chung, J. Yang, C.-G. Lyuh, H. Kim, C. Kim, J.
Ham, M. Choi, K. Shin, J. Han, and Y. Kwon, AB9: A neural
processor for inference acceleration, ETRI J. 42 (2020), no. 4,
491–504.

11. J. Chung, H. Kim, K. Shin, C.-G. Lyuh, Y. C. P. Cho, J. Han, Y.
Kwon, Y.-H. Gong, and S. W. Chung, A layer-wise frequency
scaling for a neural processing unit, ETRI J. 44 (2022), no. 5,
849–858.

12. ARM, ARM neoverses V1 core technical reference manual, 2023.
13. ARM, ARM neoverses CMN-700 coherent mesh network techni-

cal reference manual, 2023.
14. NVIDIA, NVIDIA H100 tensor core GPU architecture: exceptional

performance, scalability, and security for the data center, 2023.
15. AMD, AMD CDNA3 architecture: the all-new AMD GPU archi-

tecture for the modern era of HPC and AI, 2023.
16. A. Waterman and K. Asanovic, The RISC-V instruction set

manual volume I: user-level ISA v2.2, 2017.
17. H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh,

R. Krishnamurthy, and S. Borkar, A 1.45 GHz 52-to-162gflops/w
variable-precision floating-point fused multiply-add unit with
certainty tracking in 32nm CMOS, (IEEE Int. Solid-State Circuits
Conf., San Francisco, CA, USA), 2012, pp. 182–184.

18. S. Mach, F. Schuiki, F. Zaruba, and L. Benini, Fpnew: An
open-source multiformat floating-point unit architecture for
energy-proportional transprecision computing, IEEE Trans.
Very Large Scale Integr. Syst. 29 (2020), no. 4, 774–787.

19. H. Zhang, D. Chen, and S.-B. Ko, Efficient multiple-precision
floating-point fused multiply-add with mixed-precision support,
IEEE Trans. Comput. 68 (2019), no. 7, 1035–1048.

20. N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K.
Gopalakrishnan, Training deep neural networks with 8-bit

JEON ET AL. 849

https://orcid.org/0000-0002-5304-2007
https://orcid.org/0000-0002-5304-2007
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774


floating point numbers, Adv. Neural Inform. Process. Syst. 31
(2018), 1–10.

21. R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, Multi2sim:
A simulation framework for CPU-GPU computing, (Proc. 21st
Int. Conf. Parallel Architectures and Compilation Techniques,
Minneapolis, MN, USA), 2012, pp. 335–344.

22. RISC-V International, Spike RISC-V ISA simulator, 2019.
23. NVIDIA, NVIDIA blackwell architecture technical brief: Powering

the new era of generative ai and accelerated computing, 2024.
24. A. Vahdat and M. Lohmeyer, Enabling next-generation AI

workloads: announcing TPU v5p and AI hypercomputer, 2023.
25. Graphcore, Graphcore documents. Available from: https://

docs.graphcore.ai/en/latest/
26. A. Firoozshahian, J. Coburn, R. Levenstein, R. Nattoji, A.

Kamath, O. Wu, G. Grewal, H. Aepala, B. Jakka, and B.
Dreyer, M TIA: First generation silicon targeting meta’s recom-
mendation systems, (Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture, Orlando FL
USA), 2023, pp. 1–13.

27. Intel, Intel Gaudi 3 AI accelerator, 2024.
28. E. Talpes, D. D. Sarma, D. Williams, S. Arora, T. Kunjan, B.

Floering, A. Jalote, C. Hsiong, C. Poorna, and V. Samant, The
microarchitecture of DOJO, Tesla’s exa-scale computer, IEEE
Micro. 43 (2023), no. 3, 31–39.

29. FuriosaAI, RNGD: The most efficient data center accelerator
for high-performance LLM and multimodal deployment. Avail-
able from: https://furiosa.ai/renegade-spec

30. Rebellions, REBEL: shaping the future of gen AI. Available
from: https://rebellions.ai/products/

31. SAPEON, Sapeon x330 product brief, 2024.
32. Cerebras,Wafer-scale engine 3: the largest chip ever built, 2024.

AUTHOR BIOGRAPHIES

Won Jeon received his BS and PhD
degrees in electrical and electronic
engineering from Yonsei University,
Seoul, Republic of Korea, in 2014
and 2021, respectively. He is cur-
rently a senior researcher at the
Hyperscale AI SoC Research

Section of the Electronics and Telecommunications
Research Institute, Daejeon, Republic of Korea. His
current research interests include neural processor
architecture designs, floating-point unit designs for
neural network computations, hyperscale artificial
intelligence hardware systems, processing-in-memory
architecture designs, and approximate computing for
neural network applications.

Mi Young Lee received her BS
degree in electrical and electronic
engineering and MS degree in infor-
mation and communication engi-
neering from Ewha Womans
University, Seoul, Republic of Korea,
in 1999 and 2001, respectively. She

joined Electronics and Telecommunications Research
Institute, Daejeon, Republic of Korea, in 2001, and is
currently a principal member of the research staff.
Her area of interest is in the hardware and software
architecture for accelerating transformer-based learn-
ing algorithms.

Joo Hyun Lee received his MS
degree in electrical engineering from
Pohang University of Science and
Technology, Pohang, Republic of
Korea, in 1998, and his PhD degree
in Korea Advanced Institute of Sci-
ence and Technology. During his

academic years, he conducted research on SPARC
micro-processor architecture. From 1998 to 2000, he
worked with advanced DRAM design team at HYNIX.
Since 2000, he has been with Electronics and Tele-
communications Research Institute, Republic of
Korea, where he researched mobile communication,
broadcasting technology, and high-speed optical net-
work. His current research interests include high-
performance AI processor and AI compiler
technology.

Chun-Gi Lyuh received his BS
degree in computer engineering from
Kyungpook National University,
Daegu, Republic of Korea, in 1998.
He received his MS and PhD degrees
in electrical engineering and com-
puter science from the Korea

Advanced Institute of Science and Technology, Dae-
jeon, Republic of Korea, in 2000 and 2004, respec-
tively. He joined Electronics and Telecommunications
Research Institute, Daejeon, Republic of Korea, in
2004, and is currently a principal member of the
research staff. His current research interests include
mobile deep learning processor, high-performance
CPU design for HPC, and SoC architecture optimiza-
tion for artificial neural network based on
transformer.

How to cite this article: W. Jeon, M. Y. Lee, J. H.
Lee, and C.-G. Lyuh, XEM: Tensor accelerator for
AB21 supercomputing artificial intelligence
processor, ETRI Journal 46 (2024), 839–850,
DOI 10.4218/etrij.2024-0141

850 JEON ET AL.

https://docs.graphcore.ai/en/latest/
https://docs.graphcore.ai/en/latest/
https://furiosa.ai/renegade-spec
https://rebellions.ai/products/
info:doi/10.4218/etrij.2024-0141



