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Abstract

Owing to the widespread advancement of transformer-based artificial neural

networks, artificial intelligence (AI) processors are now required to perform

matrix–vector multiplication in addition to the conventional matrix–matrix

multiplication. However, current AI processor architectures are optimized for

general matrix–matrix multiplications (GEMMs), which causes significant

throughput degradation when processing general matrix–vector multiplica-

tions (GEMVs). In this study, we proposed a port-folding GEMV (PF-GEMV)

scheme employing multiformat and low-precision techniques while reusing an

outer product-based processor optimized for conventional GEMM operations.

This approach achieves 93.7% utilization in GEMV operations with an 8-bit

format on an 8 � 8 processor, thus resulting in a 7.5 � increase in throughput

compared with that of the original scheme. Furthermore, when applied to the

matrix operation of the GPT-2 large model, an increase in speed by 7 � is

achieved in single-batch inferences.
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1 | INTRODUCTION

As recent artificial neural networks diversify and
transformer-based language models [1] become exten-
sively used, the use of matrix–matrix and matrix–vector
multiplication operations increases. [2–5] The existing
artificial intelligence (AI) accelerators are optimized for
the most computationally complex operations, namely,
general matrix–matrix multiplications (GEMMs). [6–10]
Utilizing these architectures for general matrix–vector
multiplication (GEMV) operations significantly decreases
the throughput compared with that of GEMM operations,
thus reducing resource utilization.

This performance degradation arises owing to mem-
ory bandwidth limitations. In other words, to accelerate

GEMV and increase accelerator utilization, increasing
the amount of data transferred per second from memory
for vector inputs is necessary. However, AI accelerators
are fundamentally designed such that the array and
buffer sizes are specified to maximize the memory band-
width supported by the system within an allowed area.
Therefore, if only the memory bandwidth is increased to
enhance the throughput of GEMV, then unnecessary
complexity may arise in the overall system because the
memory bandwidth is not fully utilized for GEMM
operations.

In this study, we proposed a GEMM–GEMV inte-
grated tensor processing architecture and methodology
that minimizes additional hardware usage by leveraging
the conventional outer-product-based processor [8]
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optimized for GEMMs. The proposed approach enhances
the operational speed of GEMVs by applying multiformat
and low-precision techniques to fully utilize the memory
bandwidth and increase the operational utilization of the
processor for GEMVs. The main contributions of this
study are as follows:

• We propose an architecture and operating methodol-
ogy for the PF-GEMV scheme combined with the mul-
tiformat low-precision technique to enhance the
throughput of GEMV operations.

• We quantify the performance of the proposed PF-
GEMV scheme in terms of utilization maximization
and speedup for various array sizes and data
precisions.

• We confirm the improved computational speed by
applying the PF-GEMV scheme to GPT-2 inferences.

• We propose a hybrid approach that integrates GEMM
and PF-GEMV for multibatch GPT-2 inference to fur-
ther enhance the computational speed.

The following section explains the operation of the
outer product-based processor and discusses the overhead
caused by GEMV in GPT-2 inference. Subsequently,
Section 3 describes the proposed PF-GEMV architecture
and operational methodology, and Section 4 presents the
numerical confirmation of speed enhancement when
applying the proposed PF-GEMV to GPT-2 inference
operations.

2 | PRELIMINARY

In this section, we describe the basic structure of the
outer product-based processor [8] and its utilization in
the GEMM and the GEMV operations. Additionally, we
briefly discussed the types of GEMV operations occurring
in the inference computations of GPT-2 [4] and the per-
formance degradation arising from processing using con-
ventional outer-product-based processors.

2.1 | Outer product-based tensor
processor

The outer product-based tensor processor [8] is an archi-
tecture characterized by a property based on which the
input data bandwidth increases by a factor of N, which
cause the number of processing elements (PEs) within
the internal processor to increase by N2, thus increasing
the throughput for GEMM operations. This architecture
typically adheres to the structure illustrated in Figure 1.
The tensor processor receives instructions, control

signals, and two operands from an external main proces-
sor and outputs the PE results with the same bitwidth as
the operand. Because the output port cannot accommo-
date the results of all PEs at once, it outputs the permit-
ted results from the specified PE index in a multicycle
manner. The operands are internally segregated into two
port groups, PG-H and PG-V, which are directly input to
the PEs. Each data port broadcasts signals to all PEs
aligned horizontally or vertically. The accumulated infor-
mation for the multiply and accumulate (MAC) operation
is managed using a register within the PE.

GEMM operation

When performing GEMM operations with matrix A of
size [MA� K] and matrix B of size [K � MB], matrix A is
first transposed into matrix AT with a size of [K � MA].
To adapt to processing within an N � N processor, seg-
ments of AT

p and Bp with sizes of [K � N] are prepared
based on the MA and MB dimensions positioned horizon-
tally, to match the N in terms of array size. In every cycle,
N data from each segmented matrix are input into the
processor, thus resulting in N2 operations being
performed per cycle. The MAC operation in the PE
repeats for K cycles and ultimately outputs a result of size
[N � N].

F I GURE 1 Conventional outer-product based tensor

processor [8] specified with deterministic bitwidth using 8 � 8

FP32-PEs. Matrix operations show an example using half of the

input operands, with connections based on relationships illustrated.

White PEs are activated for computation and gray PEs are

deactivated. PE, processing element.
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GEMV operation

In cases where the input A or B are vectors instead of
matrices, the port group for the vectors receives only one
valid data point per cycle instead of N data points, and
the processor can perform N operations per cycle. This
architecture results in significantly reduced memory
bandwidth occupancy and decreased operational utiliza-
tion owing to element-wise inputs. Consequently, the
throughput of GEMV operations decreases to 1/N com-
pared with that of GEMM operations. In this study, we
proposed an extended architecture for enhancing PE uti-
lization in GEMV operations, thus ultimately alleviating
throughput degradation while maintaining the funda-
mental outer product structure to sustain the throughput
of GEMM operations.

2.2 | GEMV overhead in GPT-2
inferences

GPT-2 [4] is one of the prominent models extensively
used for language modeling, structured in a stacked form
of multiple block layers based on the scale of the GPT-2
model. Each block layer consists of a sequence of self-
attention modules and feed-forward networks. Internally,
the self-attention module comprises matrix operations,
such as the generation of query, key, and value matrices,
multihead attention (MHA) operations, and the projec-
tion operations are composed of fully connected layers,
which are sequentially connected.

Depending on whether GPT-2 is performing inference
or training operations, the behavior of internal matrix
operations varies. During training, all matrix operations
can be implemented using GEMM. However, during
inference, as shown in Table 1, when operating in single-
batch scenario cases, all matrix operations operate as
GEMVs, whereas in multibatch scenario cases, only the
MHA operations operate as GEMVs, while the rest
function as GEMMs.

Table 1 presents the computational percentages and
operation cycles for inference-specific matrix operations
in a single block layer of the GPT-2 small (GPT-S) [11],
divided into the MHA and the remaining part. Herein,
the word iteration is set to the maximum value of 1024
and represents the case in which the last word of most
sentences is generated. The operation cycle is calculated
based on the throughput of GEMV and GEMM, set at
8 and 64, respectively, using an outer product-based 8 �
8 PEs.

In a single-batch scenario, all matrix operations are
implemented using the GEMV function, which may lead
to inefficient operation in the conventional neural pro-
cessing architectures optimized for GEMM operations.
Furthermore, in a multibatch scenario, although the
number of operations performed by the GEMV function
accounts for only 18% of the total, owing to the through-
put degradation of GEMV operations in actual hardware
operation, it occupies 64% of the operation cycles. Ulti-
mately, the degradation in operation speed is primarily
caused by GEMV operations.

3 | PF-GEMV: PE UTILIZATION
MAXIMIZING ARCHITECTURE

This section introduces a method for improving the oper-
ational efficiency of GEMV without altering the conven-
tional outer-product-based architecture or compromising
the overall computational speed of GEMM. For the con-
ventional GEMV shown in Figure 1, matrix data are
assigned to PG-H and a scalar datum of the vector is uti-
lized among the data transmitted to PG-V per cycle. Con-
sequently, whereas N2 PEs are fully utilized in the N�N
array architecture for GEMM, the array utilization rate
for GEMV decreases to 1/N.

In this study, we proposed a GEMV scheme, namely,
port-folding (PF), to enhance operational efficiency by
extending the matrix data to the port for vector data
while integrating low-precision formats. The interface
and basic operational structure between the outer-
product-based tensor processor and main processor
adhere to the conventional architecture shown in
Figure 1. This paper describes a method to improve the
existing PE structure to enhance the GEMV throughput.

3.1 | Multilevel low-precision
transmission

The proposed PF-GEMV enhances PE utilization by
allocating matrix data to both input operand ports. As
illustrated in the conventional structure in Figure 1, the

TAB L E 1 GEMV overhead for block layer of GPT-S [11]

inference model.

Complexity

Batch = 1 Batch = 8

MHA + others MHA Others

Operations 100 18% 82%

Cycles 100% 64% 36%

Function type GEMV GEMV GEMM

Note: The word iteration was set to the maximum value of 1024. The
computation cycle was calculated for an 8�8 PE.
Abbreviations: GEMV, general matrix–vector multiplication; MHA,
multihead attention.
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existing GEMV has low PE utilization. The PF-GEMV
technique improves throughput by utilizing the other-
wise unused PEs without requiring additional PE imple-
mentations. Additionally, by reducing the precision of
only the matrix data by the folding level L, the PF scheme
enables the packing and transmission of more data to the
PEs within a single cycle. This approach maximizes
the utilization of an N � N PE structure by a factor of L
(2 – 1/N). The maximum value of folding level L is lim-
ited to N/2. For the vector input, a scalar datum is input
at every cycle and broadcast to all valid PEs to be allo-
cated as a common input along with the extended
matrix data.

For instance, when using a 32-bit PE arithmetic unit
with a 16-bit matrix format, L is 2 and two 16-bit elements
are packed into a single 32-bit port, such as H0[1:0][15:0],
and then internally distributed to two separate 32-bit PEs
(see Figure 2B). The vector element is transmitted, while
its original 32-bit precision is maintained. When an 8-bit
input format is applied, that is, L = 4, four 8-bit matrix ele-
ments are packed into a single 32-bit port, such as H0 [3:0]
[7:0], and then internally distributed to four separate
32-bit PEs (see Figure 2C). As L increases to 2 and 4,
the PE utilization improves by factors of (4 – 2/N) and
(8 – 4/N), respectively. When L is 1, no reduction in preci-
sion is observed; therefore, the utilization is improved by a
factor of (2 – 1/N) (see Figure 2A).

The proposed PF-GEMV scheme is applicable to both
integer and floating-point (FP) PE arithmetic units, with
the low-precision format determined by the data type
supported by the PE. Before initiating the GEMV opera-
tion, the matrix data are converted into a low-precision

format (i.e., quantization). Although reducing the preci-
sion of the matrix data can affect the accuracy of neural
networks, performance degradation can be prevented by
utilizing existing data-calibration techniques for integers
[12, 13] and exponent scaling for FPs [14, 15] during data
quantization phase. Recent studies pertaining to quanti-
zation indicate that for transformer-based language
models such as Llama [16], which perform better than
GPT-2, the weight matrices can be quantized to 4-bit inte-
ger precision [13] and 6-bit FP precision [14] while main-
taining an inference performance comparable to that of
the baseline model.

3.2 | Allocation of PEs

The outer product-based array structure has a directional
flow, in which one input data port is broadcast to the
internal PEs, either horizontally or vertically, as illus-
trated in Figure 1. To select the activated PEs for PF-
GEMV, the operational conditions are set as follows.

• Each internal PE only accepts two external inputs,
which are limited to the vector and matrix data.

• The data ports constituting the horizontal and vertical
operands are uniquely allocated to the PEs forming the
array structure and only the allocated PEs are activated
to perform GEMV operations.

• When L data elements are integrated into a single port,
where each of the L elements is distributed to the cor-
responding L internal PEs in the respective direction
for computation.

(A) (B) (C)

F I GURE 2 Examples of PE allocation and data distribution for multilevel port-folding schemes using 8 � 8 32-bit PEs. Bit-

configuration of PG-V and PG-H is defined with [dimension of PE structure, N][folding-level, L][reduced bitwidth of matrix]. Overall

structure and connections are briefly illustrated. Detailed connections between the input port and PEs adhere to the PE structure shown in

Figure 1. (A) Level 1 PF-GEMV (L = 1), (B) Level 2 PF-GEMV (L = 2), and (C) Level 4 PF-GEMV (L = 4). PE, processing element; PF-

GEMV, port-folding GEMV.
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• For the N PEs connected to a single port in either the
horizontal or vertical direction, L PEs are assigned
from that port, whereas the remaining PEs can be
assigned individually from the ports in the orthogonal
direction.

For instance, in the case in which a 16-bit data format
is used for the matrices (see Figure 2B), the H0 input port
is uniquely assigned to two of the eight internal PEs in
the horizontal direction. Similarly, the V0 input port is
uniquely assigned to two (among eight) internal PEs in
the vertical direction. From the third row of PEs (PE16 to
PE23), four PEs are activated, two of which are affected
by the H2 input, one by the V4 input, and one by the V5
input.

3.3 | Workflow

This section describes the utilization of the PF scheme to
perform the multiplication operation of the ½M�K�
matrix and ½K�1� vector, as well as the method of out-
putting the computed results stored in the PE registers.

Input segmentation

The [M � K] matrix is segmented into partial matrices of
size [L(2N – 1) � K], where L and N represent the folding
level and the size of the array structure, respectively.
Each partial matrix operation is multiplied by the [K � 1]
vector using the PEs. To ensure compatibility, the matrix
size M is adjusted to be a multiple of L(2N – 1), with any
remaining area padded with zeros. Additionally, in neu-
ral network inference, the matrix for GEMV operation
typically corresponds to the weight parameters of a pre-
trained network. Therefore, the pretrained weights can
be prequantized to a low-precision format that matches
the desired folding level before the operation
commences.

Data distribution

As illustrated in Figure 2, the PE structure is classified
into four regions comprising two Group-H and two
Group-V, which manage the horizontal and vertical
inputs, respectively. In the conventional multiplication of
matrices A and B (GEMM), matrix A is assigned to PG-H,
which connects to the Op-A of PEs within Group-H and
Group-V, whereas matrix B is assigned to PG-V and con-
nects to the Op-B of the PEs (see Figure 3A). Therefore,
in conventional GEMV operations, to reuse the existing

port connections, the scalar of the vector connected to
PG-V is broadcast using only some of the PEs in Group-H
(see Figure 3B).

The proposed PF-GEMV maintains the existing port
connections for GEMM operations while utilizing PG-V
for the matrix input and adding a multiplexer to distrib-
ute the scalar of the vector to both Group-H and Group-V
(see Figure 3C). The matrix input is connected to
Group-H and Group-V in only one direction, whereas the
vector, that is, the V7 port in PG-V, is directed toward
Group-H and Group-V through separate ports and broad-
casts internally. Compared with the conventional data
distribution, the data distribution for the PF-GEMV
scheme includes a multiplexer for vector- and data-
masking logic directed toward specific PEs.

Processing

As shown in Figure 4A, in the case of level 4 folding,
each port contains four consecutive data elements, with
each data element being distributed to different PEs. The
MAC operations inside the PE maintain the original
input, accumulation, and output precision of 32 bits,
regardless of the input-data precision. Therefore, when
level 4 folding is applied to a 32-bit PE, as illustrated in
Figure 4B, the input 8-bit matrix data are reconverted to
32-bit data within the PE using a format converter (CVT).
Similarly, if the 16-bit input matrix data (in the case of
level 2 folding) are used with a 32-bit PE, then they are

F I GURE 3 Input-data distribution for conventional and

proposed operations. Matrix illustration for PF-GEMV. (C) Example

of 8 � 8 PE structure (N = 8) at folding level L. Each input port,

such as H0, contains L matrix elements: (A) conventional

distribution for GEMM, (B) conventional distribution for GEMV,

and (C) distribution for PF-GEMV. PF-GEMV, port-folding GEMV.
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reconverted to their original precision by the CVT. The
vector data are consistently input with the same precision
as the PE, regardless of the folding level.

The internal PE configuration determines the input
ports to be assigned to the matrix and vector based on the
group of the current PE. The PE in the Group-H region
assigns 8-bit matrix data from PG-H to the Op-A input
and 32-bit vector data to the Op-B input. Conversely, the
PE in the Group-V region assigns 16-bit matrix data from
PG-V to the Op-B input and 32-bit vector data to the
Op-A input.

The total number of operation cycles for the seg-
mented partial GEMV is determined by the intermediate
dimension K of the original matrix and vector. Based on
the outer product-based PE structure, the results of the
operations are individually stored in the accumulation
registers (which depend on the internal PEs). During
each cycle, the MAC operation receives the stored results

from the previous cycle as inputs for addition. Therefore,
once K cycles of operations are completed, the final result
can be obtained by outputting the PE registers.

Output results

The overall structure of the tensor processor is shown in
Figure 1; the bitwidth of the output data port is the same
as that of a single input operand port. Therefore, the reg-
ister values of all the PE structures are not output simul-
taneously; instead, only the amount of data permitted by
the output bitwidth is partially output over multiple
cycles. Figure 5 illustrates the amount and sequence of
output data over multiple cycles for both the conven-
tional and proposed GEMV.

In the conventional GEMV, the output values are
stored in PEs positioned along a unidirectional diagonal,
thus allowing data to be output in a single cycle (see
Figure 5A). By contrast, the proposed PF-GEMV gener-
ates L(2 – 1/N) times more values within the same num-
ber of operation cycles as the conventional GEMV.
Consequently, depending on the folding level, data
blocks of up to eight packed elements are output over
two, four, and eight cycles (see Figure 5B).

To accommodate this, the ST-D (store for diagonal
PEs) instruction used for data output in the conventional
architecture must be extended to support bidirectional
diagonals. Additionally, new instructions need to be
implemented: ST-DB (store for diagonal block PEs) to
support blocked diagonal store for level 2 folding and ST-
LB (store for linear block PEs) to support blocked linear
store for level 4 folding.

Figure 6 illustrates the total effective cycles for the
GEMV operation of multiplying an ½M�K� matrix by a
½K�1� vector, specifically when M is 8N. In the

F I GURE 4 Example of data masking and assignment with 8

� 8 32-bit PEs in level 4 PF-GEMV: (A) masking for multilevel PF-

GEMV and (B) MAC operation in 32bit-PE. PE, processing

element; PF-GEMV, port-folding GEMV.

(A) (B)

F I GURE 5 Amount and sequence of output data for both conventional and proposed PF-GEMV results with 8 � 8 PE structure. Based

on the overall structure shown in Figure 1, the amount of data that can be output per cycle is equal to the PE structure dimension N:

(A) conventional GEMV and (B) proposed PF-GEMV for levels 1, 2, and 4. PF-GEMV, port-folding GEMV.
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conventional case, partial GEMV operations are repeated
eight times, with each requiring K cycles and each repeti-
tion followed by a one-cycle output command, thus
resulting in a total of (8K + 8) cycles. The proposed level
1 PF-GEMV performs four repetitions of the partial PF-
GEMV operation over K cycles each, followed by addi-
tional operations on the residual matrix [4 � K]. This
results in five PF-GEMV operations and nine data out-
puts, which require (5K + 9) cycles. Similarly, for level
2 and level 4 PF-GEMV, including operations on the
residual matrix [4 � K], the total numbers of cycles
required are (3K + 9) and (2K + 9), respectively. Thus, as
the folding level increases, the total GEMV operation
time decreases.

4 | EXPERIMENTAL RESULTS

In this section, we verify the improvement in computa-
tional speed for GPT-2 [4] inference using the proposed
PF-GEMV schemes. Experiments were conducted based
on three types of GPT-2 models: small (S) [11], medium
(M) [17], and large (L) [18], as shown in Table 2. The
batch size was varied while considering the word itera-
tion at a maximum value of 1024 to represent the highest
computational complexity.

4.1 | PE utilization

The baseline architecture for calculating the computation
cycles is an outer product-based 8 � 8 processor, where
each PE supports 32-bit format MAC operations and

accepts data in 32-, 16-, and 8-bit formats. The 32-bit for-
mat can be considered the FP 32-bit format, 16-bit as the
BF16 format [19], and 8-bit as the hybrid-FP8 [15] for-
mat. The operation time is represented in terms of the
calculated operation cycles, where the cycles denote
the total number of operations for GEMM or GEMV
divided by the throughput of the processor, as shown in
Table 3.

The proposed level 1 PF scheme extends the ports
based on a 32-bit format, whereas level 2 folding involves
packing two 16-bit data points per port, and level 4 entails
four 8-bit data points per port. The throughput of the pro-
posed levels 1, 2, and 4 PF-GEMV schemes increased by
1.88, 3.75, and 7.5 times, respectively, compared with the
conventional GEMV method. The throughput of
the GEMM operations remained consistent at 64 across
all architectures without performance degradation.

The GEMV utilization rate for the 8 � 8 array archi-
tecture shown in Figure 2 increased up to 93.7% by
employing a level 4 folding scheme with minimal 8-bit
precision. As shown in Table 4, in a 4 � 4 array configu-
ration based on a 32-bit PE and 32-bit data port, the utili-
zation of a 16-bit data format with a level 2 folding
scheme enables the availability of 14 among 16 PEs, thus
resulting in a maximum utilization rate of 87.5%. Simi-
larly, in a 16 � 16 array configuration based on a 16-bit

F I GURE 6 Total effective cycles including GEMV and data

output operations in the multiplication of (M � K) matrix and (K �
1) vector. Indicated cycles are calculated for M = 8N. GEMV,

general matrix–vector multiplication.

TABL E 2 Dimensions for three types of GPT-2 models.

Configurations
GPT2-S
[11]

GPT2-M
[17]

GPT2-L
[18]

Embedding size 768 1024 1280

Heads 12 16 20

Layers 12 24 36

Maximum
words

1024 1024 1024

Depth 64 64 64

TABL E 3 Architectural features of conventional 8 � 8 array

and proposed GEMV schemes.

8 � 8 array
architecture

Original
GEMV

Proposed PF-GEMV

Level
1

Level
2

Level
4

Matrix precision 32-bit 32-bit 16-bit 8-bit

GEMV throughput
(operations/cycle)

8 15 30 60

PE utilization 12.5% 23.4% 46.9% 93.7%

Note: The GEMM throughput is equal to 64 in all approaches.
Abbreviations: GEMV, general matrix–vector multiplication; PE, processing
element.
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PE and 16-bit data port, adopting a 4-bit data format with
a level 4 folding scheme allows for the availability of
124 among 256 PEs, thus resulting in a maximum utiliza-
tion rate of 48.4%.

Maximizing utilization

Based on recent studies, when the capability of conduct-
ing GPT-2 assessments and training under the hybrid-
FP8 format [20] is considered, employing an 8 � 8 array
structure (where the 32-bit data format is used for GEMM
and 8-bit data format is utilized for GEMV) achieves the
highest computational efficiency and operational utiliza-
tion in GPT-2 operations.

Maximizing speed increases

To enhance the processing speed of GPT-2 computations,
using the 4-bit data format [21] can realize high-speed
processing in a 16 � 16 array structure. Under 16-bit
GEMM operations, 256 data points can be processed per
cycle, whereas 4-bit matrix data are employed in GEMV
operations, thus resulting in a utilization rate of 48.4%,
which significantly enhances the processing speed.

4.2 | GEMV Acceleration in GPT-2

As described in Section 2.2, GPT-2 inference operations
behave differently depending on the batch size. When
the batch size is 1, the matrix operations in the self-
attention and feedforward networks are executed using
GEMV. For batch sizes larger than 1, only the MHA
operations in the self-attention module are composed of
GEMV, whereas the remaining matrix operations
use GEMM.

In this section, we demonstrate that the proposed PF
scheme with an 8 � 8 processor can effectively accelerate
GEMV operations in GPT-2 inferences. Furthermore, we
show that, depending on the batch size, replacing or mix-
ing GEMM with the proposed GEMV scheme is advanta-
geous in terms of speed.

4.2.1 | Single-batch inferences

We analyzed the reduction in GEMV operation time for
three types of GPT-2 models under a batch size of 1.
Figure 7 illustrates the reduction in the number of opera-
tion cycles when the proposed PF schemes are applied to
three types of GPT-2 models: GPT-S [11], GPT-M [17],
and GPT-L [18]. Compared with the original 32-bit
scheme, in the GPT-S model case, the levels 1, 2, and
4 schemes reduced the number of operation cycles by
45%, 72%, and 85%, respectively. This translates to speed
improvements of 1.83, 3.58, and 6.83 �, respectively.
When the 8-bit, level 4 scheme was applied to the three
GPT-2 models above, the performance improvements
increased with the model scale, and the speed increased
by 6.83, 6.87, and 7.02 �, respectively.

4.2.2 | Multibatch inferences

We calculated the number of operation cycles for the
GPT-L model [18] as a function of the batch size. We
aimed to verify the decrease in the number of GEMV
operations for a single layer of GPT-2 block operation.
Additionally, we introduced a hybrid approach that sepa-
rates operations to enable the utilization of both GEMM
and GEMV for a specific batch size. Ultimately, we con-
firmed that the level 4 folding technique with an 8-bit
format exhibited a linear performance improvement as
the batch size increased.

TAB L E 4 Throughput and utilization performance of original

and proposed PF-GEMV schemes by array size.

GEMV scheme

4 � 4 PE 8 � 8 PE 16 � 16 PE

Throughput / Utilization

Original 4 / 25.0% 8 / 12.5% 16 / 6.2%

PF-GEMV level 1 7 / 43.7% 15 / 23.4% 31 / 12.1%

PF-GEMV level 2 14 / 87.5% 30 / 46.9% 62 / 24.2%

PF-GEMV level 4 - / - 60 / 93.7% 124 / 48.4%

PE precision 32-bit 32-bit 16-bit

GEMM throughput 16 64 256

Abbreviations: GEMV, general matrix–vector multiplication; PE, processing
element.

F I GURE 7 Acceleration of GPT-2 single-batch inference.
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Decreasing GEMV cycles for GPT-2 inferences
The operations within the MHA module are processed as
GEMV operations regardless of the batch size, while the
remaining operations can be handled as GEMM, when
the batch size is greater than one. Figure 8 depicts a
graph illustrating the cycle counts for GEMM and GEMV
operations as batch size increases. When the batch size
was equal to the array size (e.g., eight), using the original
GEMV scheme resulted in GEMV operations that consti-
tuted 51.6% of the total operation (including GEMM). By
applying the proposed levels 1, 2, and 4 PF-GEMV
schemes, the GEMV percentages decreased to 38.3%,
25.7%, and 17.2%, respectively.

Conditional hybrid computing
For a specific batch size, the hybrid approach combining
GEMM and PF-GEMV operations resulted in shorter
computation times compared with individual approaches.
The hybrid approach is an operational method aimed at
reducing unnecessary computations caused by zero pad-
ding during GEMM. Zero padding occurs when the
matrix size is not a multiple of the array size N. To pre-
vent unnecessary computations resulting from zero pad-
ding, we combined GEMM and PF-GEMV. This hybrid
approach, as illustrated in Figure 9, considers the remain-
der area of the input matrix B divided by the array size

N as the input vector for PF-GEMV and considers
another matrix A as the input matrix for PF-GEMV. In
this case, zero padding is only applied to the areas corre-
sponding to the input matrix of PF-GEMV, whereas the
areas regarded as vectors are processed immediately
without padding.

In the context of GPT-2 block operations, we investi-
gated the performance differences when GEMM and the
hybrid approach were used for a selected operation that
utilized GEMM in multibatch scenarios. Figure 10
presents a performance comparison of the operations
associated with generating Q, K, and V matrices in the
self-attention module as a function of batch size.

For the 16-bit format, level 2 PF-GEMV demonstrated
throughput of 46.9%, as shown in Table 4. This implies
that level 2 PF-GEMV can achieve higher speeds than
GEMM when the partial matrix size is less than half the

F I GURE 8 Decreasing GEMV operation cycles of GPT2-L

inference for multibatch embedding without using a hybrid

approach: (A) original (32 bit), (B) PF-GEMV-Lv1 (32 bit), (C) PF-

GEMV-Lv2 (16 bit), and (D) PF-GEMV-Lv4 (8 bit). PF, port-

folding GEMV.

F I GURE 9 Hybrid computation involving GEMM and PF-

GEMV. GEMM, general matrix–matrix multiplication; PF-GEMV,

port-folding GEMV.

F I GURE 1 0 Comparison of computing cycles for cases

involving GEMM, GEMV, and hybrid approach. The target

function is QKV generation in GPT2-L: (A) QKV generation with

PF-GEMV-Lv2 (16 bit) and (B) QKV gene ration with PF-GEMV-

Lv4 (8 bit).
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array size. Therefore, for an 8 � 8 array, when the batch
size has a remainder ranging from 1 to 3 after its divi-
sions by 8, the hybrid approach performs faster proces-
sing than GEMM. Meanwhile, in the remaining cases,
GEMM computations are faster.

For the 8-bit format, as shown in Table 4, level 4 PF-
GEMV demonstrates a throughput of 93.7%. This indi-
cates that level 4 PF-GEMV can perform faster processing
than GEMM when the partial matrix size is smaller than
the array size. Consequently, when the batch size divided
by 8 has a remainder (ranging from 1 to 7), the hybrid
approach performs faster processing than GEMM.

In levels 2 and 4 folding cases, when the batch size
was less than 8, GEMM operations vanished in the
hybrid computation, thus indicating that the hybrid
approach operated exclusively under PF-GEMV. Addi-
tionally, when the batch size was a multiple of 8, the
hybrid approach operated exclusively under GEMM.
Therefore, in the 8 � 8 array structure, applying 8-bit,
level 4 PF-GEMV affords a higher computational speed
for all batch sizes than the original GEMM-only
approach.

Alleviating performance flatten
Figure 11 shows a graph comparing the computation
cycles of the original and three proposed PF-GEMV
schemes for a single layer of the GPT-L model [18]. The
performance of the proposed levels 2 and 4 PF-GEMV
was achieved when the hybrid approach that separates
GEMM and PF-GEMV operations based on the three
types of matrix operations for a block layer was applied,
namely, the QKV generation of the self-attention module,
projection operations, and feedforward network opera-
tions. The level 1 PF-GEMV graph represents the out-
comes obtained when only PF-GEMV was applied to
MHA operations, whereas the other operations were
computed using GEMM without using the hybrid
approach.

Overall, the proposed PF-GEMV scheme effectively
reduced the number of computation cycles. In particular,
employing the level 4 PF-GEMV scheme with an 8-bit
format for an 8 � 8 processor increased the GEMV
throughput to match the GEMM throughput, as shown
in Table 4. This enhanced the utilization for GEMV oper-
ations and structurally alleviated the memory bound,
thus addressing the performance-flattening issue associ-
ated with batch-size variations.

Performance flattening occurred during GEMM oper-
ations when the input matrix size was not a multiple of
the array size, thus resulting in zero padding for input
matrices A and B. This resulted in inefficient operations
within the padded regions. However, when combined
with level 4 PF-GEMV, which exhibited a throughput
similar to GEMM on an 8 � 8 array, the computation
cycles decreased linearly as the matrix size changed.

5 | CONCLUSION

This paper discussed the architecture and methodology
required to improve the utilization and throughput of
GEMV operations without degrading GEMM perfor-
mance in an outer product-based processor. Applying the
proposed level 4 PF-GEMV to an 8 � 8 processor
enhanced array utilization by up to 93.7%. By utilizing
the proposed structure, GEMV operations achieved a
similar computational performance to GEMM operations.
Consequently, the performance flattening caused by
matrix zero padding in GEMM functions was addressed
using PF-GEMV functions in parallel. In the case of infer-
ence operations using the GPT-2 large model, the pro-
posed level 4 PF-GEMV achieved a 7 � higher
computational speed in single-batch operations, which
was approximately 3.9 � and 2.4 � higher under batch
sizes of 2 and 4, respectively.

In future studies, we shall focus on implementing the
proposed PF-GEMV structure in a neural processor with
a memory system. This change will allow the measure-
ment of the comprehensive computation time consumed
during the execution of GEMM and GEMV kernels, as
well as the verification of area increase owing to
PF-GEMV.
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