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Abstract

The photochemical acid generation is refined from the first principles of quan-

tum electrodynamics. First, we briefly review the formulation of the quantum

theory of light based on the quantum electrodynamics framework to establish

the probability of acid generation at a given spacetime point. The quantum

mechanical acid generation is then combined with the deprotection mecha-

nism to obtain a probabilistic description of the deprotection density directly

related to feature formation in a photoresist. A statistical analysis of the ran-

dom deprotection density is presented to reveal the leading characteristics of

stochastic feature formation.
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1 | INTRODUCTION

The physics of optical lithography has steadily entered
the quantum regime owing to the constant demand to
reduce the physical length scale of the patterning process.
In particular, the classical-to-quantum transition has
been accelerated by introducing an extreme ultraviolet
(EUV) exposure system with a typical wavelength of
approximately 10�8 m.

Among other things, the quantum effect in EUV
lithography has been most faithfully represented by shot
noise arising from the quantum fluctuation of the inci-
dent light intensity. Such quantum fluctuation has been
statistically averaged out for an exposure system having a
high photon density of states (i.e., dose per energy of each
photon). However, for EUV exposure, no drastic increase
in the exposure dose compared to the increment in

individual photon energy gives rise to severe quantum
fluctuations in light intensity.

It has been widely accepted that the fluctuations can
be depicted by the randomness of the number of photons
following a Poisson distribution under a given dose [1].
Nevertheless, the fully quantum mechanical exposition of
shot noise in the context of optical lithography has barely
been studied.

This paper provides a firm physical ground for quan-
tum mechanical shot noise in optical lithography by
employing quantum electrodynamics (QED) [2]. More
precisely, we reformulate the photochemical process for
acid generation in the language of QED by identifying
the photochemical process with the photoelectric detec-
tion of light.

The QED formulation of acid generation merely
demonstrates the well-established proportionality
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between classical light intensity and photoelectric detec-
tion probability [3]. However, the exceptional merit of
introducing QED to optical lithography is the capability
to integrate the physical descriptions of the primary
and secondary photochemical processes, such as flares
and secondary electrons, into a single framework,
although such secondary effects are not discussed in
this work.

With probabilistic acid generation, we proceed to the
stochastic deprotection mechanism of the photoresist by
defining deprotection density as a random field on the
spacetime points of localized acid generation. The ran-
dom deprotection density then allows us to compute the
probability of pixel formation at each spatial location in
the resist, which leads to the probability of a feature
forming in a given region.

The probabilistic feature formation in our work is
closely related to the former works in [4, 5]. However,
our work elaborates on discussions in those works with
detailed quantum mechanical acid generation and rather
refined statistical analyses.

The remainder of this paper is organized as follows.
In the following section, we provide a QED formulation
for photochemical acid generation, including a brief
review of the construction of the QED and a revision of
the photoelectric detection of light. In Section 3, we pre-
sent a statistical analysis of the randomness of feature
formation in a resist arising from the probabilistic nature
of acid generation. Section 4 is devoted to the conclu-
sions and outlook of the current work.

2 | QUANTUM MECHANICAL
FORMULATION OF ACID
GENERATION

In optical lithography, a feature on a photoresist is
formed by developing deprotected polymers in the
photoresist using a resist developer. Deprotected poly-
mers are generated through a deprotection mechanism
carried out by the chemical reaction between protected
polymers and acids, in which the latter are produced by
the photochemical process of photoacid generators
(PAGs).

At the molecular level, acid generation occurs when
the confined electrons of PAGs are released through
interactions with the exposure light. Accordingly, the rate
of acid generation can be identified with that of photo-
electric detection of light, which is a well-known applica-
tion of the quantum theory of light. The following
subsections provide a quantum mechanical description of
acid generation by reformulating the photoelectric detec-
tion of light in QED.

2.1 | Quantum theory of light: A brief
review

The quantum theory of light and its interaction with
charged particles has been most successfully formulated
in the quantum field theory (QFT) framework, ensuring
the manifest spacetime Lorentz symmetry and the unitar-
ity of quantum mechanics. In this subsection, we briefly
review the formulation of the QFT for light and charged
particles, called QEDs, following the notations and con-
ventions of [6].1

In the QFT framework, the elementary quantum state
relevant to light is an excited quantum state over the
ground state j0i, called the photon. Photons can be
created and annihilated by the set of creation and
annihilation operators a p, σð Þ, a† p, σð Þ� �

, where p¼
p0, p1, p2, p3ð Þ and σ¼�1 denote the four-vector
momentum and intrinsic spin of the photon, respectively.

The four-vector momentum p satisfies the massless
condition

0¼ p1
� �2þ p2

� �2þ p3
� �2� p0

� �2
, ð1Þ

together with p0 ≥ 0, where p0 is the photon energy. The
creation–annihilation pair satisfies the following commu-
tation relation:

a p, σð Þ, a† p0, σ0ð Þ� �¼ δσσ0δ p�p0ð Þ ð2Þ

for p¼ p1,p2,p3ð Þ and p0 ¼ p01,p02,p03ð Þ.
The creation–annihilation pair forms the quantum

field Aμ xð Þ (μ¼ 0, 1, 2, 3) via

Aμ xð Þ¼Aμ
þð Þ xð ÞþAμ

�ð Þ xð Þ, ð3Þ

where

Aμ
þð Þ xð Þ¼ 2πð Þ�3=2

X

σ¼�1

ð
d3pffiffiffiffiffiffiffi
2p0

p eμ p, σð Þa p, σð Þeipx , ð4aÞ

Aμ
�ð Þ xð Þ¼ 2πð Þ�3=2

X

σ¼�1

ð
d3pffiffiffiffiffiffiffi
2p0

p eμ ∗ p, σð Þa† p, σð Þe�ipx , ð4bÞ

with the polarization vector eμ and its complex conjugate
eμ ∗ .

1In particular, Planck’s constant ℏ and the speed of light c are taken to
be unity. We also use the Einstein summation convention for repeated
indices.
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The massless condition in (1) is translated into the
equations of motion for Aμ as follows:

□Aμ ¼ 0, ð5Þ

which is a homogeneous wave equation. Also, the
Lorentz symmetry implies the dynamics of Aμ to be
invariant under the gauge transformation given by

Aμ xð Þ 7!Aμ xð Þþ ∂μΩ xð Þ, ∂μ ¼ ∂

∂xμ
: ð6Þ

To construct the dynamics of Aμ consistent with the
gauge symmetry, we introduce the field strength

Fμν ¼ ∂μAν� ∂νAμ ð7Þ

showing the linear relation between the field strength F
and A.2 The most general form of the action is given by

S¼
ð
d4xL, L¼�1

4
FμνF

μνþ JμA
μþLmatter, ð8Þ

where Jμ ¼ Jμ ψð Þ is the current written in some charged
matter fields ψ and Lmatter is the Lagrangian for the
charged particles represented by ψ .

The dynamical system of Aμ represented by (8) is a
constrained system owing to the gauge symmetry in (6).
Consequently, only Am (m¼ 1, 2, 3) are dynamical, and
we have to choose an appropriate gauge to exhaust gauge
freedom. Here, we choose the Coulomb gauge

∂mA
m ¼ 0, m¼ 1, 2, 3: ð9Þ

Altogether, the Hamiltonian of the system is obtained
as follows:

H¼
ð
d3x

1
2
EmEmþ1

2
BmBmþ JmAm

	 

þHmatter⊕Coul,

ð10Þ

where

F0m ¼Em, Fmn ¼ ϵmnpBp, m, n, p¼ 1 ,2, 3 ð11Þ

and

Hmatter⊕Coul ¼Hmatter�1
2

ð
d3xd3y

J0 xð ÞJ0 yð Þ
4πjx�yj : ð12Þ

Having the Hamiltonian H in (10) for light and
charged matter, one can compute the evolution of a
quantum state given at the initial time. A detailed discus-
sion of the quantum evolution of a physical system can
be found in the standard literature, such as [7].

2.2 | Photoelectric detection probability

As indicated at the beginning of this section, acid genera-
tion can be identified by the photoelectric detection of
light. In this process, the exposure system can be repre-
sented by the Hilbert space H, which is the product space
Hγ

NHψ of the space of photons Hγ and charged parti-
cles Hψ . At the initial time t0, two systems are completely
disentangled [8], so that the initial state jΨ t0ð Þi�H is
given by

jΨ t0ð Þi¼ χj iO ψj i, χj i�Hγ and ψj i�Hψ : ð13Þ

For the detection of light, we are only interested in
the occurrence of an interaction between light and
charged matter at a given time t> t0. Accordingly, we do
not need to specify the states in Hψ at t0 and t if they sat-
isfy the following conditions:

ψj i⊥ ψj i , ψh ψj i¼ 0, ψj i, ψj i�Hψ : ð14Þ

where ψj i denotes the state of charged matter at time t.
Also, we trace Hγ out at t since the final state of light is
not a concern.

Altogether, we have the transition amplitude T t, t0ð Þ
equivalent to the probability of a photochemical interac-
tion as follows:

T t, t0ð Þ¼
X

ψ ,ψ �Hψ
ψ ⊥ ψ

Tr ψj i ψh jρψ tð Þ� �
, ð15Þ

where ρψ tð Þ denotes the density matrix obtained by
tracing out Hγ as

ρψ tð Þ¼Tr
Hγ

ρ tð Þ, ρ tð Þ¼ Ψ tð Þj i Ψ tð Þh j: ð16Þ

In perturbative expansion, the first nonvanishing con-
tribution to T t, t0ð Þ is given by [8]

2The linearity between a given quantum field and its field strength
reflects the abelian nature of the gauge transformation in (6). In
addition, linearity ensures no self-interaction between photons;
therefore, photons can only interact with each other through charged
particles.
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T t, t0ð Þ
’ P

ψ ,ψ �Hψ
ψ ⊥ ψ

ðt

t0

d4x2

ðt2

t0

d4x1Tð2Þðψ ,ψ ,J,A;x1,x2Þþ c:c,

ð17Þ

where c:c: denotes the complex conjugate of the previous
term and

Tð2Þðψ ,ψ ,J,A;x1,x2Þ¼ ψh jJm x1ð Þ ψj i ψh jJn x2ð Þ ψj i
� χh jAm x1ð ÞAn x2ð Þ χj i: ð18Þ

To simplify the transition amplitude in (17), we
impose the following assumptions arising from a typical
exposure process:

1. The wave vector k and wave frequency ω of light
sharply peak around k0 and ω0 (i.e., quasi-monochro-
matic) so that the investigated physical scale of the
spacetime satisfies

Δxj j� 1
Δk0

����
����, Δtj j� 1

Δω0

����
����, ð19Þ

where Δk0 ¼ k�k0 and Δω0 ¼ω�ω0. The first condi-
tion in (19) reflects our interest in the spatially local-
ized detection of light achieved by restricting the
spatial integration domain in (17). Therefore, unless
otherwise specified, the spatial integration domain
in (17) in the below is taken to be small enough to sat-
isfy the condition in (19).

2. The charged medium (i.e., the photoresist) is isotropic
on the orthogonal plane of k0. For notational simplic-
ity, we assume k0 to be along the z-direction so that
xy-plane is the orthogonal plane of k0.

Condition 1 implies that the correlation of light
in (17) is [8]

χh jAm x1ð ÞAn x2ð Þ χj i≈ χh jA�ð Þ
m x0ð ÞA þð Þ

n x0ð Þ χj i
�2cos kμ0 x1� x2ð Þμ

� 

,

ð20Þ

where kμ0 ¼ ω0, k0ð Þ for a spacetime point x0 ¼ x0, t0ð Þ in
the integration domain of (17). In turn, (17) can be
expressed as follows:

T t, t0ð Þ¼ χh jAm
�ð Þ x0ð ÞAn

þð Þ x0ð Þ χj iκmn ð21Þ

where

κmn ¼ 2
P

ψ ,ψ �Hψ
ψ ⊥ ψ

ðt

t0

d4x1

ðt

t0

d4x2 ψh jJm x1ð Þ ψj i

� ψh jJn x2ð Þ ψj icos kμ0 x1� x2ð Þμ
� 


:

ð22Þ

Since κmn is symmetric in its indices, the isotropy of
the charged medium, together with the Coulomb gauge
condition and condition 1, indicates that

κmn ¼ δmnη, η¼ 1
3
Tr κmnð Þ: ð23Þ

Therefore, one finds

T t, t0ð Þ¼ η χh jAm
ð�Þ x0ð ÞAðþÞ

m x0ð Þ χj i: ð24Þ

Finally, the optical equivalence theorem [9, 10]
implies that Am

ð�Þ x0ð ÞAðþÞ
m x0ð Þ is proportional to the quan-

tum correspondence I x0ð Þ of the classical light intensity.
Absorbing the proportional factor into η, we obtain
the previously established photoelectric detection
probability [3]

px0 ¼ η I x0ð Þh i: ð25Þ

where η denotes the quantum efficiency.
Furthermore, by applying Poisson statistics to px0 , we

can obtain the detection probability for n photons in a
spatial region V and time interval Δt as [11]

pγ,E¼ V ,Δtð Þ nð Þ¼ T Wne�W

n!

� �
, ð26Þ

where T denotes the time ordering and

W ¼
ð

V
d3x

ð

Δt
dtη x, tð ÞI x, tð Þ: ð27Þ

corresponding to the total intensity absorbed by V ,Δtð Þ.
The Poisson-like distribution pγ,E nð Þ in (26) is often
approximated as

pγ,E nð Þ’ Wh ine� Wh i

n!
, ð28Þ

which reproduces the Poisson distribution of the number
of photons in [1].
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3 | ANALYSIS OF PROBABILISTIC
FEATURE FORMATION

As outlined in the previous section, stochastic acid gener-
ation can be integrated with a chemical kinematic model
to establish a mechanism for deprotection. In this sec-
tion, we delve into a simple deprotection mechanism
characterized by randomness arising exclusively from the
photoelectric probability.

3.1 | Random deprotection density and
probabilistic feature formation

Given localized acid generation, the deprotection mecha-
nism can be effectively depicted by a chemical kinetics
model, as in [12]. In such a kinetics model, the density of
the deprotected polymer at x, tð Þ arising from acid-
catalyzed deprotection with respect to each localized acid
generation at xj, tj

� �
, j¼ 1, 2, …, n is given by

ρD x, t; xj, tj
� �

, so that the total deprotection density
ρD,total is determined by [4]

ρD,total x, t; xj, tj, n
� �¼

Xn

j¼1

ρD x, t; xj, tj
� �

: ð29Þ

Here, ρD denotes the diffusion of acid during the
exposure process and subsequent post-exposure baking.
The probability of photoelectric detection exclusively gov-
erns the stochastic nature of the diffusion. Practically,
such diffusion is influenced by various base effects such
as photodecomposable quenchers (PDQs) and neutraliza-
tion, which may introduce additional stochasticity to the
deprotection density [13].

The quantum mechanical description of acid genera-
tion in the previous section indicates that acid generation
at a given spacetime occurs with probability px,t in (25).
Moreover, given a spacetime region E, one can easily find
the probability distribution function for local generations
of acid at xj, tj

� �
, j¼ 1, 2, …, n as

pγ xj, tj, n
� �¼ pγ,E nð Þ

Yn

k¼1

p̂γ xk, tkð Þ ð30Þ

with p̂γ x, tð Þ¼ px,t
W with the relative probability pxj,tj of the

acid generation at each xj, tj
� �

. The total deprotection
density ρD,total x, t; xj, tj, n

� �
can then be regarded as a

random field ρD,total x, t; X j, Tj, N
� �

over the spacetime
derived from random variables

X j, Tj, N
� �� pγðxj, tj, nÞ, ð31Þ

where � denotes the corresponding probability density
function.

Using the relation between px,t and the aerial inten-
sity iaerial x, tð Þ¼ I x, tð Þh i in (25), we have the expectation
of ρD,total as

E ρD,total x, tð Þ� � ¼ ηρD
N

iaerialð Þ x, tð Þ
�
ð
d4xηρD x, t;x0, t0ð Þiaerial x0, t0ð Þ: ð32Þ

to which ρD,total converges for a large absorption W of
open dose. The form (32) implies that the expectation of
ρD,total corresponds to the convolution imaging of iaerial
often taken as the nominal intensity iresist of the resist
image.

In the patterning process, a pixel on a photoresist is
formed if the density of the deprotected polymer exceeds
a certain threshold τ at the development process [4, 5].
Thus, the probability of generating a pixel at a given posi-
tion x is given by

ppixel xð Þ¼P ρD,total x, tf
� �

≥ τ
� �

, ð33Þ

where P …½ � denotes the probability of condition …½ � and
tf is the final time for the exposure process.

Similarly, a feature in the exposed region E corre-
sponds to a three-dimensional object P�E such that for
any x �P,

ρD,totalðx, tf Þ≥ τ: ð34Þ

In turn, the probability of feature formation in a given
region P can be formally written as

pfeature ¼P inf x � PρD,totalðx, tf Þ≥ τ
� �

: ð35Þ

Similarly, we may consider the probability of no fea-
ture formation in P:

pmissingðPÞ¼ 1�P sup
x � P

ρD,totalðx, tf Þ≥ τ

� �
, ð36Þ

in which P supx � PρD,totalðx, tf Þ≥ τ
� �

is often called the
excursion probability.

The formal probabilities in (35) and (36) enable us to
define the probabilities of various printing failures. For
instance, the probability of unexpected patterning (resp.
missing) in a given region P corresponds to pfeature (resp.
pmissing) [5]. However, it should be noted that the
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computation of the excursion probability for a given ran-
dom field is somewhat nontrivial, and its analytic formula
has been known only for a few exceptional cases [14].

3.2 | Asymptotic analysis of probabilistic
feature formation

We now discuss the asymptotic behavior of the probabil-
ity density ρD,total of a deprotected polymer for a large
absorption W in (26). A sufficiently large absorption can
be achieved by increasing the exposure dose or the area
of the exposed area of interest.

For a large W , only a large number N of photoelectric
interactions contributes significantly to the probability
distribution of ρD,total. For such a large N , we can apply
the central limit theorem so that

ρD,total x, tf
� ��N n

W
iresist x, tf

� �
, nσ2D x, tf

� �� 

pγ,EðnÞ, ð37Þ

where σ2D denotes the variation in ρD given by

σ2D ¼E ρ2Dðx, tf Þ
� ��E ρDðx, tf Þ

� �2 ð38Þ

and N μ,σ2ð Þ is a normal distribution with mean μ and
variance σ2.

By denoting the cumulative distribution function of
the normal distribution in (37) as Φ, we can obtain the
probability of pixel formation at x as

ppixelðxÞ¼
X∞

n¼0

1�Φðτ; nÞð Þpγ,EðnÞ: ð39Þ

As a simple example illustrating the stochastic analy-
sis, we consider a family of static single-line patterns
(i.e., the corresponding light intensity is constant in time)
defined by aerial intensities in the form of

iaerial xð Þ¼ i0sinc 2πxð Þ2, sinc xð Þ¼ sin xð Þ
x

, ð40Þ

which are classified by the relative intensity i0 at x¼ 0.
For simplicity, we set the quantum efficiency η¼ 1

and employ a normalized Gaussian kernel for the depro-
tection kernel, that is,

ρD xð Þ¼N x, h2
� � ð41Þ

in which h¼ 1=50 satisfies our purpose here. Subse-
quently, given the threshold τ, the critical dimension
(CD) of a single line is determined by the interval
x �ℝf ρD,total xð Þ≥ τ

�� �
(see Figure 1).

For a large i0, we may approximate ρD,tottal as in (37).
Figure 2 illustrates the probability of pixel generation at
each point on x with two different relative intensities:
i0 ¼ 80 and i0 ¼ 120.

Finally, we consider the pattern-missing probability
for a nominally patterned region. As noted above, the
exact computation of excursion probability is highly
demanding. However, the lower bound of an excursion
probability can be computed if a unique peak in P exists
in the second moment of the Gaussian random field.
Explicitly,

P sup
x � P

ρD,totalðx, tf Þ≥ τ

� �
≥Φ

τ

supx � PE ρ2D,totalðxÞ
h i� 
1=2

0
B@

1
CA:

ð42Þ

F I GURE 1 The simplest family of single-line patterns defined

by aerial intensity. The dashed and solid lines indicate the aerial

and resist image intensities, respectively. The interval determined

by the threshold (green line) corresponds to the nominally

patterned region.

F I GURE 2 Probabilities for a single-pixel formation of a

single line under two relative intensities.
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The lower bound of the excursion probability on P
then provides the upper bound of the missing probability
as

pmissingðPÞ≤ 1�Φ
τ

supx � PE ρ2D,totalðxÞ
h i� 
1=2

0
B@

1
CA: ð43Þ

Figure 3 shows the relation between the probability of
no patterning in the nominally patterned area and the
relative intensity (left) or nominal CD (right). As shown in
both figures, our simple example qualitatively captures the
characteristics of the stochastic printing failures in [15].

Another consequence of a large W condition is the
probabilistic deviation of the boundary of a given feature
from its nominal boundary. For this, let x0 be the nomi-
nal boundary of the feature, so that for a given threshold
τ, E ρD,total x0ð Þ� �¼ τ.

For a large W condition, we may consider the proba-
bilistic deviation of the boundary of a given feature from
its nominal boundary. For this, let x0 be the nominal
boundary of the feature, so that for a given threshold τ,
E ρD,total x0ð Þ� �¼ τ.

Then for a small deviation δx, we have the condition

τ ¼ ρD,total x0þ δx, t; X j,Tj
� �

’ ρD,total x0, t; X j, Tj
� �þ δxm∂mρD,total x0, t; X j, Tj

� � ð44Þ

to x0þδx be a deviated boundary. Therefore, by defining
the line edge roughness (LER) as

LER¼E δx2
� �

, ð45Þ

one finds

LER’ Wσ2D
∂miresist x0ð Þ∂miresist x0ð Þ ð46Þ

which reproduces the result of [4].

4 | CONCLUSION AND OUTLOOK

In this work, we have applied QED to obtain a fully
quantum mechanical description of photochemical acid
generation identified with the photoelectric detection of
light. We have seen that the well-known proportionality
between the probability of acid generation and the inten-
sity of incident light can be reproduced under certain
assumptions in the QED framework.

Although we have focused merely on the occurrence
of acid generation, a more detailed analysis is available in
the QED framework by emphasizing the dynamics of
charged matter and the final state of the exposure system.
For instance, one may split the final state of the photons
by the momentum of a state having an acute angle with
respect to the incident wave vector to investigate the rate
of flare generation during exposure. Also, by specifying
the dynamics of charged matter to be that of electrons
through the spin 1/2-field, one can determine the rate of
generation of secondary electrons having sufficient
energy to further trigger the deprotection mechanism. In
this sense, the QED formulation provides an integrated
framework for investigating secondary effects, which will
be discussed in future studies.

Using probabilistic acid generation, we have con-
structed a probabilistic description of deprotection
density in the photoresist, as reported by [4, 5]. The prob-
abilistic nature of the deprotection density reveals the
relationship between the expectation of deprotection and
the resist image intensity in convolution imaging.

In addition, the explicit form of the deprotection
density allows us to perform an asymptotic analysis
under a large absorption condition, which refines the
work of [4, 5]. In particular, under asymptotic conditions,
we have found that deprotection density can be depicted
by a Gaussian random field, enabling the simulation of
randomness in the resist image using a Monte Carlo type
simulation.

In a typical lithography process, a large absorption
condition can be achieved by enlarging the exposed area
of interest, and an asymptotic analysis can thus be used to
construct a simulation model for quantum fluctuations in

F I GURE 3 Probability of no

pattering in the region reserved by

the nominal resist intensity with

respect to the relative dose (left) or

nominal critical dimension

(CD) (right).
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the patterning process. In particular, by approximating the
deprotection blur κ¼ Ð

Ed
4xη

� �� Ð
Ed

4yρ2D yð Þ� �
as a con-

stant, we can express the asymptotic formula as follows:

ρD,total x, tf
� ��N iresist x, tf

� �
,κiaerial x, tf

� �� �
, ð47Þ

so that κ is fitted by measurement under the given
resist image intensity and aerial intensity computed by
a conventional simulation model. This simulation model
is conceptually similar to that in [5], which has been
widely applied to construct EUV stochastic models
[16–19].

Finally, the parameter κ can be considered as the
leading characteristic of the photoresist, which governs
the sensitivity of the resist under quantum fluctuations.
Thus, κ can be considered a physically refined parameter
of the k4 factor in [20].
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