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Abstract

We propose a number-theory-based quantized mathematical optimization

scheme for various NP-hard and similar problems. Conventional global opti-

mization schemes, such as simulated and quantum annealing, assume stochas-

tic properties that require multiple attempts. Although our quantization-based

optimization proposal also depends on stochastic features (i.e., the white-noise

hypothesis), it provides a more reliable optimization performance. Our numer-

ical analysis equates quantization-based optimization to quantum annealing,

and its quantization property effectively provides global optimization by

decreasing the measure of the level sets associated with the objective function.

Consequently, the proposed combinatorial optimization method allows the

removal of the acceptance probability used in conventional heuristic algo-

rithms to provide a more effective optimization. Numerical experiments show

that the proposed algorithm determines the global optimum in less operational

time than conventional schemes.

KEYWORD S
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1 | INTRODUCTION

Developing an effective combinatorial optimization-
algorithm for solving NP-hard and similar problems is a
crucial prerequisite for using machine learning to over-
come engineering challenges [1–3]. The classic Markov
chain Monte Carlo (MCMC) algorithm developed in the
1950s is an early algorithmic approach [4–8]. Simulated
annealing (SA) is an advanced MCMC method developed
in the 1980s for thermodynamic challenges [9, 10]. SA
assumes stochastic properties when seeking global con-
vergence [11–14]. Such stochastic analyses have inspired
the development of new heuristic combinatorial optimi-
zation algorithms (e.g., genetic and evolutionary [15, 16]
and particle swarm types [17, 18]; analysis of the particle

swarm algorithm can be found in [19, 20]). Another
approach for solving an NP-hard problem is an optimiza-
tion technique based on a numerical differential evolu-
tionary algorithm. Recent research on such optimization
techniques involves the transformation of a comprehen-
sive multimodal objective function with multivariable
parameters into a single-objective optimization problem
using fuzzy processing. Following this transformation,
we can obtain a feasible solution using differential evolu-
tionary optimization for a simplified problem [21, 22].

From the viewpoint of stochastic optimization,
stochastic features require related search algorithms to be
written as Langevine stochastic equations with indepen-
dent drift and diffusion terms. The transition probabili-
ties of these search algorithms converge to Gibbs or
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Boltzmann distributions under appropriate conditions.
Hence, based on Laplace’s theorem [13], their global opti-
mization convergence performance is weak owing to the
unnecessary divergence permitted in the early stages of
the search [12, 14, 23]. Recently, researchers exploring
global optimization in modern artificial intelligence
rediscovered Laplace’s theorem [17, 20]. Therefore, the
acceptance probability given by weak convergence can be
excessively high. Such divergence is still a powerful way
to avoid local minima; however, it drastically slows con-
vergence and reduces optimization performance.

Many researchers have proposed schemes to improve
convergence speed, but their global convergence perfor-
mance has never been proven [24–28]. Therefore, this
study applies number and measure theories to analyze
the quantized optimization algorithm. Traditional opti-
mization analyses have rarely exploited number theory,
leading quantization-based optimization to remain out of
reach [29].

Analyzing the effects of quantization based on num-
ber theory provides an intuitive numerical interpretation
from which exciting results can be obtained based on the
quantization of the objective function. In other words, the
size of the objective function’s level set can be redefined
based on measurement theory optimization: the generali-
zation and formalization of geometrical measures.

From these foundations, we propose an effective opti-
mization algorithm to improve performance and speed.
Additionally, we confirm the validity of the quantized-
based optimization algorithm using the simulation results
of a continuous multimodal function and the traveling
salesman problem (TSP) involving more than 100 cities.

2 | PRELIMINARIES

2.1 | Quantization definitions

Before describing the proposed algorithm, we establish
the following definitions and assumptions.

Definition 1. For f �R, we define the quan-
tization of f as

f Q ≜
1
Qp

Qp � f þ0:5 �Q�1
p

� �j k
¼ f þ εQ�1

p , ð1Þ

where bf c�Z denotes the floor function such
that bf c≤ f for all f �R, Qp �Qþ denotes the
quantization parameter, and ε�R denotes
the quantization error.

Definition 2. We define quantization param-
eter Qp �Qþ as a monotonically increasing
function, Qp :R

þþ 7!Zþ, such that

QpðtÞ¼ η �bhðtÞ, ð2Þ

where η�Qþþ denotes the fixed constant part
of the quantization parameter, b represents
the base, and h :Rþþ 7!Zþ denotes the power
function such that hðtÞ"∞ as t!∞.

To discuss the main algorithm, we consider the opti-
mization problem for an objective function, f , such that

minimize f :Rn 7!Rþ: ð3Þ

In various combinatorial optimization problems, the
actual input is considered as xr � ½0,1�m. Thus, there
exists a proper transformation from a binary input to a
proper real vector space such that T : ½0,1�m !X ⊆Rn,
where X represents the virtual domain of the objective
function f . Under the transformation assumption, we
assume that f �C∞ fulfills the Lipschitz continuity as
follows:
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Assumption 1. For xt �Boðx ∗ ,ρÞ, there
exists a positive value, L, with respect to the
scalar field, f ðxÞ :Rn !R, such that

kf ðxtÞ� f ðx ∗ Þk≤Lkxt� x ∗ k, 8t> t0, ð4Þ

where Boðx ∗ ,ρÞ denotes an open ball,
Boðx ∗ ,ρÞ¼ fxjkx�x ∗ k< ρg, for all ρ�Rþþ,
and x ∗ �Rn denotes the global optimum.

2.2 | Primitive algorithm

For the most elementary implementation, we apply the
proposed quantization technique to the BRS algorithm.
First, as shown in Algorithm 1, we randomly select an
input point, xt, and quantize the value of the objective
function, f ðxtÞ, such that f QðxtÞ with the quantization
parameter, Qpðt�1Þ.

Comparing the quantization values, f Qðxt�1Þ and
f QðxtÞ, if f Qðxt�1Þ is greater than or equal to f QðxtÞ, we
establish xt as the optimal value and replace xt with xt .
Following this procedure, we update the quantization
parameter, Qpðt�1Þ, by increasing the power function,
hðtÞ, defined in (2). We denote this as the requantization
process. Because we update the quantization parameter,
the quantization value of f QðxtÞ is requantized using
QpðtÞ. Consequently, we select another input point as
part of the BRS, as shown in Figure 2.

We also propose a simple initialization of the quanti-
zation parameter to implement BRS with the proposed
scheme. We want the transition probability of the initial
state, Pðx1jx0Þ, to be maximized such that Pðx1jx0Þ¼ 1.
Therefore, the quantization of the other objective func-
tion values, f Qðx1Þ, 8x1 ≠ x0, should be lower than the
quantization of the initial objective function. For this
purpose, we establish the initial quantization parameter,
η, as represented by the following theorem.

Theorem 1. Suppose the initial value of a
given objective function, f ðx0Þ�R, is
supx � R f ðxÞ. As shown by the proposed algo-
rithm, the probability of transitioning to the next
step, Pðx1jx0Þ, is one when the initial parame-
ter, η�Qþ, satisfies the following equation:

η¼ b�b log bð f ðx0Þþ1Þc, ð5Þ

where b represents the base of Definition 2
for QpðtÞ.

Proof. Using the proposed algorithm and its
assumptions, we establish the following
inequality for all x1 ≠ x0:

f ðx0ÞþQ�1
p ð0Þ≥ f ðx1ÞþQ�1

p ð1Þ: ð6Þ

From the definition of quantization
parameter Qp, we note that Qpð0Þ¼ ηb0 ¼ η
and Qpð1Þ¼ ηb�1. Thus,

f ðx0Þþη�1 ≥ f ðx1Þþη�1b ) f ðx0Þ� f ðx1Þ≥ η�1ðb�1Þ:
ð7Þ

We assume that η is the power of b; that
is, η¼ bk, where k�Zþ. By substituting η with
the power, b, we can rewrite (7) such that

f ðx0Þ� f ðx1Þ≥ b�kðb�1Þ ) f ðx0Þ� f ðxÞ
b�1

≥ b�k

) � logb
f ðx0Þ� f ðx1Þ

b�1
≤ k

) k≥ logbðb�1Þ� logbð f ðx0Þ� f ðxÞÞ:

ð8Þ

As logbðb�1Þ≥ 0 and logbð f ðx0Þ�
f ðx1ÞÞ≥ logb f ðx0Þ for all x1 ≠ x0, we obtain
the following inequality:

k ≥ logbðb�1Þ� logbðf ðx0Þ� f ðxÞÞ
> �1� logb f ðx0Þ≥ �b1þ logb f ðx0Þc:

ð9Þ

Therefore, because f ðx0Þ�R is
supx � R f ðxÞ and the initial transition proba-
bility is one, we can establish the initial value
of the quantization parameter, η¼Qpð0Þ, as

η¼ b�b log bðf ðx0Þþ1c: ð10Þ

□

3 | ANALYSIS OF THE PROPOSED
ALGORITHM

3.1 | Corresponding to quantum
annealing (QA)

The proposed optimization scheme uses a monotonically
increasing quantization resolution to provide an
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embedded QA effect. After updating the optimal point,
we increase the quantization parameter to provide an
effect equivalent to QA tunneling. For conformation, we
set the conceptual Hamiltonian, which is used as the
objective function in QA according to [30, 31] and [32],
as follows:

HðsÞ¼AðsÞH0þBðsÞH1, H,H0, and H1 �Rþ, ð11Þ

where s�R½0,1� is a scheduling parameter that depends
on time t�R½0, tf �, H0 is a predetermined Hamiltonian in
which the lowest-energy state is easily determined, and
H1 is a user-input Hamiltonian that is the real objective
function to be optimized. In (11), AðsÞ is a scheduler
function of H0 that depends on s. AðsÞ is a monotonically
decreasing function from Að0Þ to Að1Þ, and BðsÞ is the
other scheduler function, which monotonically increases
from Bð0Þ to Bð1Þ. In QA, an optimizer (e.g., SA) finds a
feasible solution to the Hamiltonian, (11), instead of
a direct optimization [33-35] and [36].

Returning to the quantization scheme, we write the
objective function, f �R½0,2Þ, defined in (3) as the power
series of base b in the quantization parameter, such that

f ðxÞ¼
X∞
k¼0

akðxÞb�k, ð12Þ

where akðxÞ�Zþ is the coefficient of the power of b�k,
which is less than b. That is, akðxÞ< b, 8x �R. Intui-
tively, we can find a local minimum of the quantized
objective function with a low-resolution quantization
parameter, QpðtÞ and high quantization step, QpðtÞ�1.
Conversely, it is difficult to find minima with a high quan-
tization resolution because the quantized objective func-
tion is asymptotically equal to the original. To prove this
intuitive proposition, we establish the supremum of the
objective function with the lowest quantization resolution
by using the following lemma and theorem (Figure 1):

Lemma 2. For a given quantization parame-
ter, QpðnÞ¼ η �bnjη¼1, the supremum of the
objective function, written as (12) at n¼ 0, is

sup
x � R

f Qpð0ÞðxÞ¼ a0þ
b

b�1
þ1
2

� �
: ð13Þ

F I GURE 1 Conceptual operation diagram of the proposed algorithm: (A) set initial point and quantization with Qp ¼ 0:25, (B) blind

random search similar to quantum annealing, (C) requantization with Qp ¼ 0:5, (D) annealing effect by an equal quantization level, (E)

requantization with Qp ¼ 1:0, and (F) find global minima with quantization error. The red point denotes the value of the objective function,

f ðxtÞ; the green point denotes the value of the quantized objective function, f QðxtÞ; the solid line represents the curve of the objective

function, f ðxtÞ 8xt �R; and the dashed line represents the quantized value of the objective function, f QðxtÞ8xt �R, coinciding with QpðtÞ.
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Proof. Let AðsÞ¼ s,BðsÞ¼ 1� s. Thus, we
obtain the following Hamiltonian for QA:

HðsÞ¼ sH0þð1� sÞH1, s� ½0,1�, H,H0,H1 �Rþ: ð14Þ

Suppose that H¼
P∞

k¼0akb
�k and 0<H

≤ 2, where b> a, 8a,b�N: Using the power
series for H, we can rewrite Hamiltonian (14)
such that

H¼ a0þ
X∞
k¼1

akb
�k ¼

Xn�1

k¼0

akb
�kþ

X∞
k¼n

akb
�k: ð15Þ

According to Definition 1 (i.e., quanti-
zation), we quantize (15) using Qpð0Þ¼
b�njn¼0 ¼ 1 as follows:

HQpð0ÞðsÞ ¼ a0þ
X∞
k¼1

akb
�kþ1

2
Q�1

p jQp¼1

$ %

< a0þ
X∞
k¼0

b �b�kþ1
2

$ %
¼ a0þ

X∞
k¼1

b�kþ1
2

$ %

¼ a0þ
b

b�1
þ1
2

� �
:

ð16Þ

Thus, (16) fulfills the lemma. □

Theorem 3. For n>0, n�N, let a finite-
order power series exist such that
~f
QpðnÞ ¼

Pn
k¼0akb

�k . We denote the supremum
of the quantized objective functions as
supx � R f QpðnÞðxÞ≜ f

s
QpðnÞðxÞ. Then, we obtain

the following equation with respect to quantiza-
tion order n:

sup
x � R

f QpðnÞðxÞ¼ ða0þ γÞ �b�nþ ~f
QpðnÞ, ð17Þ

where γ � ½1,2� is the maximum integer given
by the round-off error of b such that
γ ≜ b=ðb�1Þþ1=2b c.

Theorem 3 indicates that as quantization order n
increases, the supremum to f QpðnÞðxÞ decreases to zero.
This property leads ~f

QpðnÞðxÞ to converge to the objective
function, f ðxÞ, asymptotically. Note that the increase in
quantization resolution is equivalent to the tunneling
effect in QA.

Proof. Let quantization parameter
QPðnÞ¼ η �bnjη¼1 ¼ bn. As shown in Definition
1, we set the quantization of the Hamiltonian
as follows:

HQpðnÞ ¼ 1
Qp

QP � Hþ1
2
Q�1
p

� �� �
: ð18Þ

By expanding (18) to QpðnÞ¼ bn, we obtain

HQpðnÞ ¼ b�n bn �
X∞
k¼0

akb
�kþ1

2
b�n

 !$ %

¼ b�n
Xn
k¼0

akb
n�kþ

X∞
k¼nþ1

akb
n�kþ1

2

$ %

¼ b�n
Xn
k¼0

akb
n�kþ

X∞
k¼nþ1

akb
n�kþ1

2

$ %!
:

ð19Þ

Because ak ≤ bn�k for all k�Z½nþ1,∞Þ,
we can rewrite (19) as

HQpðnÞ < b�n
Xn
k¼0

akb
n�kþ

X∞
k¼nþ1

bnþ1�kþ1
2

$ % !

¼
Xn
k¼0

akb
�kþb�n

X∞
k¼0

b�kþ1
2

$ %

¼
Xn
k¼0

akb
�kþb�n b

b�1
þ1
2

� �
:

ð20Þ

From the assumptions in Theorem 3, we
note the definitions of γ and
H

QpðnÞ ¼ supHQpðnÞ. We also let ~H
QpðnÞ ¼Pn

k¼0akb
�k without loss of generality. With

these definitions and (19), we induce the
supremum of HQpðnÞ for each n�ℕ such that

H
Qpð0Þ ¼ a0þ γ

H
Qpð1Þ ¼ a0þa1b

�1þ γ �b�1 ¼ a0þða1þ γÞ �b�1

H
Qpð2Þ ¼ a0þa1b

�1þa2b
�2þ γ �b�2

¼
X1
k¼0

akb
�kþða2þ γÞb�2 ¼ ~H

Qpð1Þ þða2þ γÞb�2

…

H
QpðnÞ ¼

Xn�1

k¼0

akb
�kþðanþ γÞb�n ¼ ~H

Qpðn�1Þ þðanþ γÞb�n:

ð21Þ

For an arbitrary n>n0,n,n0 �N, we
assume that an ¼ a0 without loss of generality.
Therefore, we rewrite (21) as
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H
QpðnÞ ¼ ~H

Qpðn�1Þ þ ðanþ γÞb�n ¼ ~H
Qpðn�1Þ þða0þ γÞb�n

¼ ~H
Qpðn�1Þ þH

Qpð0Þb�n ¼H
Qpð0Þb�nþ ~H

Qpðn�1Þ
:

ð22Þ

Given supx � R f QpðnÞðxÞ and ~f
QpðnÞ, we note

that Equation (22) is equivalent to
Equation (17), thereby proving the
theorem. □

Moreover, when we set a Hamiltonian such that
HðsÞ¼AðsÞH0þBðsÞH1 for QA with the parameter s
increasing from zero to one, AðsÞ monotonically
decreases to zero (Figure 2). Thus, we obtain the follow-
ing equivalence:

HðsÞ ¼H
QpðnÞ, H0 ¼H

Qpð0Þ: A0 ¼ b�n ¼QpðnÞ

BðsÞH1 ¼ ~H
Qpðn�1Þ ¼

Xn�1

k¼0

akb
�k:

ð23Þ

Because the parameter s increases from zero to one as
the time index increases from zero to ∞, the proposed
quantization scheme satisfies the property of the Hamil-
tonian in QA. This equivalence indicates that the pro-
posed algorithm provides a global optimum [37]. In the
next section, we analyze this property from the viewpoint
of convergence.

3.2 | Brief analysis of the convergence
property for the proposed algorithm

We can establish a stochastic differential equation (SDE)
for the proposed algorithm, as follows [37]:

dX s ¼�rf ðX sÞdsþ
ffiffiffiffiffiffi
Cq

p
Q�1
p ðsÞdW s, s�Rðt, tþ1Þ:

ð24Þ

where X �Rn denotes a random variable corresponding
to the input parameter for the L-Lipschitz continuous
objective function f :Rn !Rþ, W s denotes an i.i.d. stan-
dard Wiener process with zero mean and variance of one,
and Cq is a constant variable corresponding to the quanti-
zation parameter QpðsÞ. In addition, we establish another
standard Wiener process feX sg as follows:

d
~X
s ¼

ffiffiffiffiffiffi
Cq

p
Q�1
p ðsÞdW s, s�Rðt, tþ1Þ: ð25Þ

To calculate the transition probability for an
arbitrary value, we introduce the following Girsanov the-
orem [38, 39].

dPx

dSx
¼ exp �

ðtþ1

t

C�1
q rf ðXsÞ
Q�2

p ðsÞ
dXs

0@
�1
2

ðtþ1

t

C�1
q krf ðXsÞk2

Q�2
p ðsÞ

ds

1A,

ð26Þ

where Px denotes the probability density for X s and Sx
denotes the probability density for eX s. According to
Assumption 1 and f �C, we can suppose that there exists
a positive value ~L such that krf ðxÞ�rf ðx ∗ Þk≤ ~Lkx�
x ∗ k for x �Rn and the global optimum x ∗ �Rn satisfying
rf ðx ∗ Þ¼ 0. Hence, by making these assumptions, we
can calculate the bound of rf ðxÞ for R½t, tþ1� as follows.

krf ðxsÞk¼ krf ðxsÞ�rf ðx ∗ Þk< ~Lkxs� x ∗ k≤ ~Lρ: ð27Þ

Using the upper bound of krf ðxsÞk, we can obtain
the upper bound of the first term in (26), such that

ðtþ1

t

C�1
q

Q�2
p ðsÞ

rf ðXsÞdXs

						
						≤

ðtþ1

t

C�1
q

Q�2
p ðsÞ

krf ðXsÞkdX s

≤

ffiffiffiffiffiffiffiffi
C�1
q

q
Q�1
p ðsÞ

~LρkWt�
1
2
k≤

ffiffiffiffiffiffiffiffi
C�1
q

q
Q�1
p ðsÞ

~Lρðρþ1Þ≤ C1

Q�1
p ðsÞ

,

ð28Þ

and second term

1
2

ðtþ1

t

C�1
q

Q�2
p ðsÞ

krf ðXsÞk2ds≤
C�1
q Lρ

2Q�2
p ðsÞ

≤
C2

2Q�2
p ðsÞ

, ð29Þ

F I GURE 2 Parabolic washboard potential functions given by

[33, 35] with the bandwidth parameter (A) α¼ 10:0 and (B) α¼ 0:3.

The bold line represents the H1 Hamiltonian, and the red line

represents the H0 Hamiltonian.
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where C1 > 0 denotes a constant value such that

C1 >
ffiffiffiffiffiffiffiffi
C�1
q

q
~Lρðρþ1Þ and the constant value C2 > 0 sat-

isfies C2 >C�1
q Lρ. Substituting (28) and (29) into (26), we

can obtain the lower bound of the Radon–Nykodym
derivation:

dPx

dSx
≥ exp � 1

Q�1
p ðsÞ

C1þ
C2

2Q�1
p ðsÞ

!!

≥ exp � C3

Q�1
p ðsÞ

!
,

ð30Þ

where C3 > 2σð0ÞC2þC1. Therefore, for any ρ>0 and
xt,x ∗ �Rn, we note that (30) yields the infimum of
PxðjX t� x ∗ j< εÞ as follows:

PxðjX t� x ∗ j< ρÞ≥ exp � C3

Q�1
p ðtÞ

!
SxðjX t�x ∗ j< ρÞ,

ð31Þ

where Sx denotes a Gaussian distribution obtained using
the standard Wiener process, W t. To prove convergence
in the distribution using Laplace’s method [11, 13], we
establish the infimum of the transition probability from t
to tþ1 such that

inf
x,y � Rn

pðt,xt, tþ1,x ∗ Þ¼ inf
x,y � Rn

lim
ρ!0

1
ρ
PxðjXt�x ∗ j< ρÞ

≥ inf
x,y � Rn

lim
ρ!0

1
ρ
� exp � C3

Q�1
p ðtÞ

!
SxðjXt� x ∗ j< ρÞ:

ð32Þ

As Sx is the probability distribution derived by the
standard Wiener process W t, we can obtain the infimum
of the transition probability pðt, xt, tþ1, x ∗ Þ as follows
[29, 37]:

SxðjXt� x ∗ j< ρÞ≥ ρ �Qpð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πCq

q
¼ ρ �C4: ð33Þ

By substituting (35) into (34), we obtain

inf
x,y � Rn

pðt,xt, tþ1,x ∗ Þ ≥ inf
x,y � Rn

lim
ρ!0

1
ρ
� exp � C3

Q�1
p ðtÞ

!
ρ �C4

¼C4 � exp �C3QpðtÞ

 �

:

ð34Þ

The convergence in the distribution means that if we
start the algorithm at any point, the transition probability
converges in the sense of a Cauchy sequence such that

lim
t!∞

sup
v,w � Rn

jpðs,v, t,x ∗ Þ�pðs,w, t,x ∗ Þj ¼ 0: ð35Þ

For convenience, we define a transition probability
from t to tþ1 such that δt ≜ inf x,y � Rnpðt, x, tþ1,yÞ.
From the lemma of the difference between the transition
probabilities based on the Kolmogorov equality in
[29, 37], we note that

lim
t!∞

sup
v,w � Rn

jpðs,v, t,x ∗ Þ�pðs,w, t,x ∗ Þj≤
Y∞
k¼0

ð1�δtþkÞ:

ð36Þ

Because ð1�aÞ≤ expð�aÞ, 8a�R, we can rewrite
the final term of (36) such that

Y∞
k¼0

ð1�δtþkÞ≤
Y∞
k¼1

expð�δtþkÞ¼ exp �
X∞
k¼0

δtþk

!
: ð37Þ

Equation (37) implies that, if the inside term in the
exponent increases to infinity, that is,

P∞
k¼0δtþk"∞, the

transition probability converges with respect to the distri-
bution. Assume that there exists an upper bound for
QpðtÞ such that QpðtÞ¼ η �bhðtÞ ≤C�1

3 logðtþaÞ provided
by the algorithm, where a denotes an arbitrary value
a�Rþ. Under this assumption, by calculating the final
term in (37) using (34), we obtain

X∞
k¼0

δtþk ≥
X∞
k¼0

C4 � expð�C3C
�1
3 logðtþaÞÞ

¼
X∞
k¼0

C4=ðtþaÞ: ð38Þ

Because the final term in (38) increases to infinity as t
increases, we can calculate the limit value of (36) such
that

lim
t!∞

sup
v,w � Rn

jpðs,v, t,x ∗ Þ�pðs,w, t,x ∗ Þj ¼ 0: ð39Þ

This indicates that the proposed algorithm converges
in the distribution as t increases to infinity.
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4 | SIMULATION RESULTS

4.1 | Standard continuous test functions

To confirm the similarities between QA and the proposed
quantization scheme, we tested the algorithms on the
optimization performance of the parabolic washboard
potential function given by

f ðxÞ¼ 0:125x2þ2sinðαxÞþ2, 8x �R, ð40Þ

where α�R is a tunneling band parameter. A small α
denotes a wider band for the tunneling effect, whereas a
large value indicates a narrow band. For the QA
algorithm, we set 0:125x2 as the primitive Hamiltonian,
H0, for s¼ 0 and f ðxÞ as H1 for s¼ 1. The performance
was tested using a traditional scheduling function
(e.g., s¼ t=tf ), where tf is the final time (Figure 3).

The function (40) in [33, 35] was used as the
benchmark function to verify the superiority of the
QA algorithm in terms of the optimization performance.
In this simulation, we set tf 1000. We set the
stop condition as the optimization error, f ðxÞ� f ðx ∗ Þ,
becoming less than or equal to the quantization error,
QpðnÞ¼ 1=4096¼ 2�12, and applied the stop condition
equally to all three testing algorithms.

Contrary to expectations, all the tested algorithms
showed adequate optimization performance for the objec-
tive function with a narrow band such that α¼ 10. How-
ever, for the wideband function, the improvement ratio
of the QA algorithm significantly decreased compared
with that of the narrowband case. This result indicates
that the QA algorithm often fails to find the global mini-
mum with a wide band, whereas the SA and proposed
algorithms do so successfully.

Table 1 lists the simulation results for the parabolic
washboard function with narrow (α¼ 10:0) and wide
(α¼ 3:0) bandwidths. Furthermore, we conducted addi-
tional experiments on well-known continuous bench-
mark functions, such as Xin-She Yang N4, Salomon,
Drop-Wave, and Shaffel N2. Because all additional test
functions are continuous, simulated annealing, QA, and
the proposed quantization-based optimization are able to
determine the global minima within a finite number of
iterations, except for the experiments for Xin-She-Yang
N4 function with QA.

As shown in Table 2, the proposed quantization-based
optimization performs better than the simulated and QA
methods with fewer search iterations.

4.2 | TSP

We solved the simulated TSP problem for 100 cities in a
two-dimensional square space with a ½0, 200� range. We
used the 2-OPT local search algorithm, which is the stan-
dard city selection method for cost evaluation [2].

For QA, we set the primitive Hamiltonian, H0, as the
initial route led by the nearest-neighbor algorithm [1]. In
all attempts, we used fixed city locations to guarantee
generality. We set the number of iterations to 10 000 for
each attempt and simulated 100 attempts to obtain aver-
age results for comparison. The results listed in Table 3
indicate that the average optimization performance of
the proposed algorithm is superior to those of the classi-
cal and QA algorithms.

We also evaluated the optimization performance of
the proposed algorithm for the TSP under severe and

F I GURE 3 (A) Error trends of each algorithm in the TSP

experiment with 100 cities. (B) The error trend shows that the

proposed algorithm results in lower overshoot, fast searching speed,

and better optimization performance with stable convergence

properties.

TAB L E 1 Simulation results of the parabolic washboard potential function.

Narrow band α¼ 10:0 Wide band α¼ 3:0

Criterion SA
Quantum
annealing Proposed SA

Quantum
annealing Proposed

Average minimum cost 0.0031 0.0031 0.0036 0.034 0.216 0.034

Improvement ratio to the initial setting 99.93 99.93 99.92 97.75 85.73 97.75
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challenging conditions. In most cases, the 100-city TSP is
used as the benchmark. However, the TSP difficulty
increases dramatically beyond 100 cities; it increases by
approximately 100 times for each additional city. This

drastic increase often causes combinatorial optimization
failure.

In our simulation, conventional SA and QA could not
find feasible solutions because they became stuck at

TAB L E 2 Simulation results of standard nonlinear optimization functions.

Function Equation Criterion SA QA Proposed

Xin-She Yang N4 f ðxÞ¼ 2:0þ
Pd

i¼1 sin
2ðxiÞ

�
� exp �

Pd
i¼1x

2
i

� �
exp �

Pd
i¼1 sin

2
ffiffiffiffiffiffiffi
jxij

p� �
Iteration 6420 17* 3144

Improvement ratio 54.57% 35.22% 54.57%

Salomon
f ðxÞ¼ 1� cos 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1x

2
i

q� �
þ0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1x

2
i

q Iteration 1312 7092 1727

Improvement ratio 99.99% 99.99% 100.0%

Drop-Wave
f ðxÞ¼ 1� 1¼cos 12þ

ffiffiffiffiffiffiffiffiffi
x2þy2

p
 �
0:5ðx2þy2Þþ2

Iteration 907 3311 254

Improvement ratio 100.0% 100.0% 100.0%

Shaffel N2 0:5þ sin2ðx2�y2Þ�0:5
ð1þ0:001ðx2þy2Þ2

Iteration 7609 9657 2073

Improvement ratio 100.0% 100.0% 100.0%

TAB L E 3 Simulation results of the traveling salesman problem with 100 cities.

Criterion SA Quantum annealing Proposed

Average minimum cost 1729.50 1721.07 1648.26

Improvement ratio to the initial setting 19.90% 20.29% 23.67%

TAB L E 4 Simulation results of the traveling salesman problem with more than 100 cities.

Number of
cities

Nearest neighbor
(initial)

Simulated
annealing

Quantum
annealing

Proposed
algorithm

Improvement
ratio

100 2159.27 1729.50 1721.07 1648.26 23.67

125 2297.86 2027.52 2028.20 1923.65 16.28

150 2497.65 2255.15 2252.82 2032.21 18.63

175 2380.52 2380.52 2380.29 2147.17 9.80

200 2769.73 2769.34 2769.42 2366.72 14.55

F I GURE 4 Comparison of traveling salesman problem routes generated by each optimization algorithm: (A) Initial path given by the

nearest neighborhood algorithm (cost¼ 2159), final path given by the simulated annealing algorithm (B) minimumcost¼ 1731 and (C)

minimumcost¼ 1706, (D) final path given by the quantization-based optimization algorithm (minimumcost¼ 1636).
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unreasonable points at which the values of the objective
functions were significantly higher. However, the list in
Table 4 shows that the proposed algorithm can find feasi-
ble TSP solutions even when the number of cities exceeds
100, which conventional algorithms cannot achieve.
Moreover, our proposed algorithm can find feasible solu-
tions for 200 cities, whereas conventional algorithms can-
not operate in such cases and become stuck at the initial
point. Therefore, the proposed algorithm outperforms
conventional algorithms such as SA and QA in terms of
optimization performance.

5 | CONCLUSION

We presented a quantization-based optimization scheme
with an increased quantization resolution to globally
optimize an objective function. The tunneling and hill-
climbing occurred at equal quantization levels, enabling
the proposed algorithm to search for minima more
effectively. We also proved that the quantization error
variance was equal to “temperature” in classical SA,
which relies on stochastic analyses. The proposed algo-
rithm automatically provides a predetermined objective
function for optimization with a low quantization reso-
lution, whereas the user must set this function manu-
ally in QA. Notably, the proposed algorithm can be
applied to discrete combinatorial and classical continu-
ous optimization problems. In future work, we plan to
develop a more effective gradient-based optimization
algorithm based on this quantization method, because
the proposed algorithm currently applies to any
objective function, regardless of its continuity. We
expect future work to establish an optimization
algorithm with a discrete learning equation, such as the
ADAM (ADAptive Momentum) optimizer. We also plan
to develop an advanced scheduling function for quanti-
zation resolution and combine the proposed scheme
with other optimization algorithms to improve overall
search performance (Figure 4).
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