
OR I G I NAL ART I C L E

Providing scalable single-operating-system NUMA
abstraction of physically discrete resources

Baik Song An1 | Myung Hoon Cha1 | Sang-Min Lee2 | Won Hyuk Yang3 |

Hong Yeon Kim1

1Artificial Intelligence Research
Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea
2SMEs and Commercialization Division,
Electronics and Telecommunications
Research Institute, Daejeon, Republic of
Korea
3Department of Computer Science and
Engineering, POSTECH, Pohang,
Republic of Korea

Correspondence
Baik Song An, Artificial Intelligence
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.
Email: bsahn@etri.re.kr

Funding information
This research was supported by the
Institute of Information &
Communications Technology Planning &
Evaluation (IITP), Government of Korea
(MSIT), Grant/Award Number: 2022-0-
00498.

Abstract

With an explosive increase of data produced annually, researchers have been

attempting to develop solutions for systems that can effectively handle large

amounts of data. Single-operating-system (OS) non-uniform memory access

(NUMA) abstraction technology is an important technology that ensures the

compatibility of single-node programming interfaces across multiple nodes

owing to its higher cost efficiency compared with scale-up systems. However,

existing technologies have not been successful in optimizing user performance.

In this paper, we introduce a single-OS NUMA abstraction technology that

ensures full compatibility with the existing OS while improving the perfor-

mance at both hypervisor and guest levels. Benchmark results show that the

proposed technique can improve performance by up to 4.74� on average in

terms of execution time compared with the existing state-of-the-art open-

source technology.

KEYWORD S
hypervisor, kernel, single-OS abstraction, virtualization

1 | INTRODUCTION

The volume of data required by computing systems for
analysis and processing is increasing at an explosive rate,
and this trend has been further accelerated by the recent
emergence of large-scale machine learning technologies.
For example, deep learning recommendation models gen-
erally require high computational power and a large
memory bandwidth with central processing units (CPUs)
and graphics processing units during embedding [1].
Therefore, the design and implementation of systems that
can handle large volumes of data have been extensively

explored, and multicore or manycore systems equipped
with many processor cores and high-capacity memory in
a single node have emerged. Most of these systems are
implemented as scale-up solutions with a nonuniform
memory access (NUMA) architecture owing to physical
limitations such as the limited number of memory
channels per CPU. Consequently, scale-up systems con-
tain multiple physical NUMA nodes in a single chassis.
However, they have a low cost efficiency, and their
setup costs increase exponentially with scaling. Owing to
the rapid development of interconnected technologies
and improved price competitiveness, scale-out systems

Received: 16 February 2023 Revised: 19 August 2023 Accepted: 12 October 2023

DOI: 10.4218/etrij.2023-0056

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2024 ETRI

ETRI Journal. 2024;46(3):501–512. wileyonlinelibrary.com/journal/etrij 501

https://orcid.org/0000-0002-4039-5380
mailto:bsahn@etri.re.kr
https://doi.org/10.4218/etrij.2023-0056
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2
http://crossmark.crossref.org/dialog/?doi=10.4218%2Fetrij.2023-0056&domain=pdf&date_stamp=2024-01-16

containing clusters with low-cost small servers are being
increasingly used. Although scale-out systems have supe-
rior price competitiveness compared with scale-up sys-
tems, they have limitations because programs must be
developed using a complicated programming model such
as MapReduce or MPI.

Recently, virtualization-based single-operating-system
(OS) NUMA abstraction has attracted the attention of
researchers. It ensures compatibility with easy-to-use
single-node programming interfaces across multiple
physical nodes and improves the cost effectiveness com-
pared with scale-up systems. Furthermore, it leverages
the existing OS as a guest. The major challenge of single-
OS NUMA abstraction is to minimize performance degra-
dation owing to abstraction overheads. Remarkably, a
huge gap in memory performance between local and
remote accesses hinders the overall system performance.
To prevent this problem, each layer in a software stack
must be optimized to single-OS abstraction environ-
ments, but existing technologies do not have this capabil-
ity. For instance, existing OSs are not designed for use as
guests in single-OS abstraction environments. In addi-
tion, hypervisors are suboptimal, especially with distrib-
uted shared memory (DSM) that abstracts discrete
memory resources in multiple physical nodes.

We introduce a virtualization-based single-OS
NUMA abstraction architecture that enables cooperation
between the guest OS and hypervisor while maximizing
the compatibility with existing OSs. The DSM overheads
are mitigated to overcome the major bottleneck of system
performance. The proposed architecture achieves a
performance improvement by a factor of up to 4.74 on
average compared with state-of-the-art open-source tech-
nologies on micro and macro benchmarks.

The remainder of this paper is organized as follows.
In Section 2, we explain the overall architecture of the
proposed single-OS NUMA abstraction. Section 3 and 4
present the optimization techniques for the hypervisor
and guest OS, respectively. In Section 5, we evaluate and
analyze the proposed techniques in comparison with
existing technologies, and related work is presented in
Section 6. Finally, Section 7 summarizes our work and
presents conclusions.

2 | ARCHITECTURE OF
PROPOSED SINGLE-OS NUMA
ABSTRACTION

In this section, we explain the overall architecture of the
proposed single-OS NUMA abstraction and briefly
describe the role, function, and interactions of the com-
ponents that constitute the corresponding system.

Figure 1 depicts the overall structure of our proposed
system. Multiple physical nodes are abstracted to create a
large virtual machine (VM), and each physical node
exports its hardware resources, such as CPUs and mem-
ory devices, to make them available to the VM. All the
physical nodes are interconnected via a commercial
off-the-shelf network infrastructure (for example, Infini-
Band). Like existing virtualization technologies, abstract-
ing physical hardware resources is accomplished by a
hypervisor. However, existing virtualization splits a single
physical resource into multiple virtual resources, whereas
the proposed single-OS NUMA abstraction combines
multiple discrete resources into a single one.

With the VM, hardware resources exported from mul-
tiple physical machines can be used as if they belong to a
single machine. All the resources are functionally trans-
parent and an existing OS can run as a guest on the VM
without modification. To optimize the performance, the
hypervisor and guest OS must be tuned. As the hypervi-
sor is in charge of hardware abstraction, it cannot access
the information in the guest OS. Therefore, the guest
makes the hypervisor aware of it through hypercalls or
some paravirtualized resources, and all these implemen-
tation details are hidden from users. The hypervisor
abstracts resources belonging to the same physical
machine as a NUMA node for the guest OS to manage
the resources and make decisions based on the NUMA
awareness aiming to minimize unnecessary data move-
ment between nodes. In addition, user applications must

F I GURE 1 Overall architecture of proposed single-OS NUMA

abstraction.

502 AN ET AL.

be aware of the NUMA architecture for optimal perfor-
mance. We assume that applications are already tailored
for NUMA awareness in this study.

The ideal single-OS NUMA abstraction should
address the following questions.

• Can single-OS NUMA abstraction provide the same
programming interface as that of a single scale-up
NUMA machine to users?

• Can performance overheads of the single-OS NUMA
abstraction owing to data movement be minimized or
hidden? In other words, can communication overheads
between NUMA nodes be reduced even with slower
networks compared with intra-node interconnects (for
example, UPI or Infinity Fabric)?

We answer the first question above, stating that an
existing OS can run as it is on top of hardware resources
abstracted as virtual NUMA nodes. The amount of guest
modification for performance optimization is minimized,
and all changes are completely hidden from users. To
answer the second question, we explain various optimiza-
tion techniques in Sections 3 and 4.

3 | HYPERVISOR DESIGN
OPTIMIZATION

The hypervisor abstracts two major components: virtual
CPU (vCPU) and memory. vCPUs are usually implemen-
ted as user threads running on hosts and can migrate
between physical cores inside a machine. However, we
pin all vCPUs to physical cores to impede migration. In a
typical bare-metal NUMA system, thread migration
between different sockets may cause unnecessary perfor-
mance degradation. For a single-OS NUMA abstraction
system, the situation becomes even worse because sched-
uling for optimal performance is complicated. For
instance, we should jointly consider user processes or
threads, vCPU threads, and physical cores to obtain the
best results.

Discrete memory devices located in multiple physical
nodes are provisioned to the guest as a single large mem-
ory device abstracted into DSM. A guest physical page
may be duplicated, migrated, or invalidated as necessary
in multiple physical nodes with DSM. An ownership is
managed per guest physical page, such that a DSM man-
ager in the hypervisor can handle the guest pages based
on the ownership information. In multithread programs,
all threads share an identical address space. Hence, if
multiple threads are concurrently running in different
physical nodes, some pages may be shared between
nodes, and communication overheads owing to page

movement between nodes should be minimized for opti-
mal performance.

Figure 2 illustrates the DSM operation when a guest
page fault occurs. First, an EPT violation causes a VM
exit on the hypervisor in the physical node where the
faulting process is running, and it is handled by han-
dle_ept_violation() in a Linux KVM. Eventually,
the DSM module in the hypervisor takes control of the
page fault handling through tdp_page_fault(),
which makes a request to the DSM module running on
the owner node of the corresponding page. After receiv-
ing the request, DSM in the owner fetches the requested
data from the local memory it manages and sends the
data to the requestor.

3.1 | clear_page()optimization

clear_page() is a function implemented in the
Linux kernel to fill newly allocated pages with
zeroes. When a guest runs Linux, this function is called
during a page fault handling procedure starting from
handle_mm_fault(). A guest process or thread may
try to allocate a physical page that is not owned by the
node it is currently running on. Then, the hypervisor
must request the owner node to fetch the page whose
data should be all zeroed immediately. As it has no
information about whether the requested page would
be zeroed, the hypervisor should adhere to the
memory coherency policy. Serious performance degrada-
tion is expected under memory-intensive workloads. To
handle this situation, we make the hypervisor aware of
clear_page()and take special actions to mitigate over-
heads. Figure 3 depicts the clear_page()optimization
mechanism in the proposed single-OS NUMA abstraction.
Instead of requesting and fetching the remote page syn-
chronously, the hypervisor allocates a local page once it
detects that the kernel is running clear_page(). Then,

F I GURE 2 Guest page fault handling through DSM.

AN ET AL. 503

it zeroes the newly allocated page and makes it available
to the user instantly while invalidating the remote page
asynchronously, which is off the critical path.

3.2 | RDMA communication
optimization

Page transmission between physical nodes is done via
RDMA operations. One-sided RDMA is preferable for
performance, but two-sided RDMA verbs should be used
because the requester has no information of the address
to fetch data from. Multiple copies of a guest physical
page in various physical nodes may have various host
virtual addresses. Therefore, transmission is performed
using send/receive pairs between a requester and
responder. For optimal performance, we implement
different receive()mechanisms for the requester and
responder. The requester performs a busy waiting
during receive() execution to improve its responsive-
ness. The responder performs poll()/sleep() to save
CPU utilization of the kernel threads it runs on.
Hence, both responsiveness and CPU efficiency are
achieved.

3.3 | Page ownership initialization

The ownership of all the guest physical pages is initial-
ized with the identifier of the NUMA node that each
physical page belongs to. When a guest process or thread
requests memory allocation with a NUMA API (for
example, numa_alloc_onnode()), it should get the
page from the NUMA node specified by the request for
optimal memory performance. If the page ownership is
not properly initialized without considering NUMA as
in [2], unnecessary communication may occur during
memory allocation owing to ownership changes between
NUMA nodes. Furthermore, once pages are allocated in
a specific NUMA node, they are not likely to migrate to
other nodes. When the pages are reused by another pro-
cess or thread after reclamation, the ownership remains
at that node. Thus, we can continue managing the pages
efficiently.

3.4 | Page prefetching

We use a simple analyzer to detect sequential memory
access patterns. Each vCPU in the VM keeps track of its
own page access pattern at the guest physical address
(GPA) level to detect its sequential patterns. If the
sequential behavior exceeds a predefined threshold,
the vCPU makes a prefetch request for a next page at the
GPA level.

4 | GUEST KERNEL DESIGN
OPTIMIZATION

This section presents the optimization techniques to
design a guest kernel for the proposed single-OS NUMA
abstraction. Guest kernel optimization aims to let the
guest recognize the hypervisor implementation for
resource management and function extensions, thus
enabling optimized guest operations. All the optimization
procedures are hidden from users, ensuring compatibility
with existing user applications without requiring changes
in the API.

4.1 | DSM-friendly readers–writer
synchronization

The most important issue in single-OS NUMA abstrac-
tion is to minimize the performance overheads of a mem-
ory system implemented as DSM. A major cause of
performance degradation with parallel workloads is the
synchronization overheads of data accesses shared by
multiple processes or threads. Data synchronization with
locking is a common problem that seriously degrades the
performance of manycore systems. When lock contention
becomes serious, several processes attempt to access a
single lock variable concurrently, causing severe cache
line bouncing that leads to the rapid degradation of the
overall system performance.

Readers–writer lock is a synchronization mechanism
that allows simultaneous access to a critical section for
read-only requests while impeding access during a write
operation occupying the lock. It is widely used because it
helps to improve the scalability of manycore systems for
read-intensive workloads. However, when a readers–
writer lock is used in DSM, the system performance may
decrease severely even under read-only workloads. In
fact, although concurrent read accesses to a critical
section are possible, the lock variable is highly contended
because all the threads try to simultaneously write the
lock variable. This problem occurs in all NUMA systems,
but it becomes worse in the case of multi-node systems

F I GURE 3 clear_page()optimization.

504 AN ET AL.

managed by DSM because inter-node interconnects are
much slower than local system buses. Thus, a novel syn-
chronization mechanism optimized for DSM is needed to
prevent this problem.

We propose a new readers–writer synchronization
technique that aims to minimize performance degrada-
tion for simultaneous read accesses to critical sections in
DSM by efficiently managing lock variables to avoid
simultaneous writes to a shared lock variable. Figure 4
shows the difference between an existing readers–writer
lock technique and the proposed one. With the existing
technique, threads running on different machines share a
single lock variable. Thus, the page containing the lock
must be updated and bounces between nodes, even under
read-only workloads. The proposed technique uses as
many lock variables as the number of physical nodes to
avoid page bouncing. Multiple lock variables are imple-
mented as an array with as many entries as the maxi-
mum number of physical nodes allowed in the system.
Each entry is aligned to fit the size of a page management
unit in DSM to prevent false sharing between nodes. For
example, if the page management unit size in DSM is
equal to that of an x86 structure (that is, 4 KB), each lock
entry is aligned with 4 KB.

When a thread attempts to occupy a reader lock, it
simply checks the physical node identifier it runs on and
updates the corresponding entry in the lock array with
an atomic operation when the lock is available. For a
writer lock, a thread occupies it by checking and updat-
ing the values of all entries in the lock array one by one.
If any entry is occupied by another thread, the writer
restores all the updated entries and abandons the
attempt. Deadlock can be prevented by updating the
lock variables in a predefined order when occupying or
releasing the lock entries. Our implementation priori-
tizes reader over writer locks to help improving concur-
rency and system scalability for read-mostly critical
sections.

We first apply this lock implementation to mmap_sem
(mmap_lock) of the mm_struct data structure in the
Linux kernel. mmap_sem is a readers–writer semaphore

to protect VMA structures organized as a red–black tree
and synchronizes readers for VMA search during page
fault handling. With the existing mmap_sem, when multi-
ple threads simultaneously generate page faults, they
simultaneously attempt to get mmap_sem with reader
locks, causing page thrashing in DSM and enormous per-
formance degradation. The proposed implementation
avoids page thrashing.

The proposed readers–writer synchronization tech-
nique helps to improve the memory performance of
existing multi-socket NUMA scale-up systems in general
and not only for the systems with DSM. The page-
aligned, multiple-entry lock structure enables each
thread to access its own lock entry in the NUMA node it
runs on without interfering other entries in different
nodes. Hence, inter-socket communication overheads are
reduced, leading to better memory access performance.
The corresponding evaluation results are presented in
Section 5.

4.2 | Spinlock alternative

Spinlock is a synchronization technique for threads
achieved through busy waiting on a condition variable. It
is widely used in various software packages, including OS
kernels, because it can be easily used given its small
memory footprint. Generally, it is implemented with
atomic instructions such as compare-and-swap. The
degree of spinlock contention increases with the system
scale, causing the overall system performance to drop
sharply. The MCS lock has emerged to prevent this prob-
lem. It avoids the lock contention by allocating local
memory to each thread and busy waiting on the memory
owned by the thread.

The spinlock implementation in the Linux kernel
consists of two parts with different purposes according to
the degree of contention. Under low contention, spinlock
is acquired and released by an atomic instruction to a
shared variable. Under high contention, it switches to the
MCS lock mechanism. Using spinlock in a guest of a
single-OS NUMA abstract system severely degrades
performance, even under low contention. In fact, simul-
taneous access to a lock variable through atomic instruc-
tions cause enormous memory overheads owing to
excessive communication in DSM.

We aim to improve the performance of a guest
kernel by adopting cache coherent synchronization
(CC-Synch) [3], a type of flat-combining lock, to the guest
kernel. CC-Synch allows a designated thread (combiner)
to execute critical sections on behalf of other threads
instead of sharing the lock variable like spinlock.
Thus, performance degradation owing to the spinlockF I GURE 4 DSM-friendly readers–writer synchronization.

AN ET AL. 505

contention can be avoided. With CC-Synch, when
multiple threads simultaneously make synchronization
requests, they wait on a queue performing local spinning
while the combiner thread handles the requests in the
queue. An upper bound on the number of requests
that each combiner serves is defined to prevent the
combiner from traversing a continuously growing queue.
After serving the predefined number of requests, the
combiner identifies the next active thread as the new
combiner.

Using CC-Synch without modification does not
improve performance in single-OS NUMA abstraction
because DSM still shows several EPT violations owing to
the data structure used by CC-Synch. DSM-friendly CC-
Synch should first use a synchronization instance per
NUMA node. The memory used by each CC-Synch must
be allocated from its local NUMA node and aligned to a
page in DSM to avoid false sharing. We use spinlock for
global synchronization between CC-Synch instances in
multiple NUMA nodes. Contention in the global spin-
lock is not serious because the number of contenders is
at most that of NUMA nodes. We apply a backoff delay
to access the global spinlock to further reduce conten-
tion. Figure 5 illustrates the implementation of DSM-
friendly CC-Synch for the proposed single-OS NUMA
abstraction.

4.3 | Adjusting alignment of guest
kernel data

When multiple pieces of data with different owners and
access patterns are in the same page, false sharing may
cause unnecessary memory performance degradation. The
Linux kernel provides mechanisms (for example, CON-
FIG_X86_VSMP) to guarantee page size alignment, but
the scope of kernel data affected by the option is very
limited.

We analyze all the page faults generated by the guest
kernel, choose kernel data that cause most page faults,
and remove them by assigning separate pages to data
with false sharing. This slightly increases the usage of
guest memory. Nevertheless, considering the tradeoff
between performance and memory footprint, our
approach seems feasible.

5 | PERFORMANCE EVALUATION

5.1 | System configuration

We evaluate the proposed techniques constituting single-
OS NUMA abstraction to examine the improvement in
the overall system performance on various benchmarks.

We compare the proposed single-OS NUMA abstrac-
tion with GiantVM [2], a state-of-the-art open source
many-to-one virtualization technology. The comparisons
are made using the same number of CPU cores and mem-
ory devices. Two different hardware platforms are used
for evaluation. The first platform is a 2-node system, with
each node equipped with two Intel Xeon Gold CPUs. For
both GiantVM and the proposed single-OS abstraction,
each physical node exports 10 CPU cores and 128 GB of
memory to create a virtual machine with 20 vCPUs and
256 GB of memory. The second platform is another
2-node system, with each node equipped with two Intel
Xeon E5 CPUs and running a VM with 32 vCPUs and
64 GB of memory.

GiantVM adopts the Linux kernel (KVM) version
4.9.76 and QEMU for the hypervisor, both modified to
create a multi-node VM. We modify the Linux kernel
4.18.20 and QEMU for the hypervisor of our single-OS
NUMA abstraction system. As GiantVM does not con-
sider a guest OS, we use an unmodified Ubuntu kernel
4.15.0-54 as the guest for GiantVM. The guest optimiza-
tion techniques described in Section 4 are implemented
as kernel patches, and we apply them to the Ubuntu
kernel for use in our single-OS abstraction system.
Tables 1, 2 and 3 list the detailed configurations used
for evaluation.

F I GURE 5 DSM-friendly CC-Synch implementation.

TABL E 1 Hardware configurations for Xeon Gold.

Components Specification

CPU 2 � Intel Xeon Gold 5215M

(10 physical cores, no hyperthreading)

Memory 384 GB

Interconnect Mellanox ConnectX-5 HCA (EDR)

Number of nodes 2

506 AN ET AL.

5.2 | Performance improvement under
memory-intensive workloads

First, we conduct a performance comparison with
memory-intensive workloads in the Xeon Gold platform.
We implement an in-house multithread memory bench-
mark that is simple but memory-intensive. In this
benchmark, a master thread first allocates a source mem-
ory shared by multiple worker threads through a mmap()
system call and populates the allocated memory area by
touching it, thereby causing page faults. Then, it creates
as many worker threads as the number of vCPUs in a sys-
tem. Each worker thread allocates and populates its
thread-local destination memory, and then it sequentially
copies data from the shared source to the destination
using the memcpy() operation. The execution time of
mapping and population for both source and destination
memory as well as the elapsed time with memcpy() are
measured per thread. All worker threads are pinned to
their corresponding vCPUs, and each vCPU thread is also

pinned to its corresponding physical core. Therefore,
threads 0 through 9 run on a primary physical node
(node 0) and threads 10 through 19 run on a secondary
physical node (node 1) without migration between the
nodes.

Figure 6 shows results of the memory benchmark
using GiantVM and the proposed single-OS NUMA
abstraction. As a VM with 20 vCPUs is configured to use
10 cores per physical node, 20 worker threads are
spawned and executed. The x axis represents the worker
thread identifier, and the y axis represents the breakdown
of execution time per thread. The mapping and popula-
tion of source memory are performed by a separate mas-
ter thread, and the corresponding overheads are equally
added to those of worker threads. The performance over-
heads of memory mapping of both source and destination
are marginal, and most overheads come from the mem-
ory population and memcpy()phases.

The proposed architecture improves the performance
by a factor of 4.74 on average in terms of execution time

TAB L E 3 Software configurations.

Type Components Specification

Hypervisor Host OS Ubuntu 18.04 LTS

Host kernel 4.9.76 (GiantVM)

4.18.20 (proposed system)

QEMU 2.8.11

Guest Guest OS Ubuntu 18.04 LTS

Kernel Ubuntu 4.15.0-54-generic

Kernel
parameters

nokaslr

Workloads Compile options -O3 -lpthread

Benchmarks In-house memory
benchmark

In-house KV-store
benchmark

PARSEC parallel
benchmark

NAS parallel benchmark
F I GURE 6 Memory-intensive benchmark results:

(A) GiantVM and (B) proposed architecture.

TAB L E 2 Hardware configurations for Xeon E5.

Components Specification

CPU 2 � Intel Xeon E5-2623 v3

(16 physical cores, no hyperthreading)

Memory 64 GB

Interconnect Mellanox ConnectX-5 HCA (EDR)

Number of nodes 2

AN ET AL. 507

compared with GiantVM. Specifically, it drastically
reduces the time consumed by destination memory popu-
lation, which takes most of the execution time. When
multiple page faults are handled simultaneously by
various threads, mmap_sem located in mm_struct in the
guest kernel is concurrently accessed. It causes severe
thrashing in DSM for the corresponding kernel page con-
taining mmap_sem. The DSM-friendly readers–writer syn-
chronization in the single-OS abstraction solves this
performance issue. Other optimization techniques intro-
duced in Sections 3 and 4 also contribute to the substan-
tial performance gain.

Further, we attempt to examine the effect of the
guest optimization techniques explained in Section 4
with a multi-socket NUMA scale-up system. Thus, we
configure another Xeon Gold server with traditional
virtualization using vanilla QEMU/KVM. A VM is config-
ured with the same number of vCPUs and memory
devices but covering two NUMA sockets in a single
physical node. Figure 7 shows the results of the memory

benchmark with a vanilla Ubuntu guest and with the
optimized one. The optimized guest outperforms the
vanilla guest by approximately 28% on average. The
amount of improvement is smaller than that achieved
with single-OS NUMA abstraction. This is reasonable
because memory overheads in scale-up systems are inher-
ently smaller than those in multi-node scale-out systems,
resulting in a relatively smaller performance gap. Never-
theless, we believe this is a remarkable result that dem-
onstrates the applicability of the proposed techniques to
general NUMA architecture as well as single-OS NUMA
abstraction.

5.3 | Evaluation with in-memory key–
value store workloads

To evaluate the performance with more realistic
memory-intensive workloads, we implement a simple
tree-based in-house key–value store (KVS) that operates
as follows. First, multiple worker processes are forked,
and each worker generates a predefined number of key–
value pairs to be inserted into the tree. Then, each worker
iteratively generates a random key and looks it up in the
tree. Finally, all trees are deleted from memory and the
program terminates. This benchmark is multi-process
(not multi-thread), and the volume of shared memory is
relatively small compared with multi-thread workloads.
However, the memory for inter-process communication
in synchronization among processes is extensively shared.
Furthermore, memory performance issues originating
from the guest kernel persist. Figure 8A,B illustrates the
performance of GiantVM and the proposed single-OS
abstraction in the in-memory KVS workload, respectively.
The x axis represents the worker process ID, and the y
axis shows the breakdown of process execution time for
the user and kernel. Each worker individually creates a
KVS of approximately 400 MB. Subsequently, workers
iteratively perform search operations on random keys,
repeating the process for the same number of times as the
count of entries within the KVS. The single-OS abstrac-
tion technique outperforms GiantVM by approximately
23% on average. A substantial portion of the performance
enhancement can be attributed to the reduction in guest
kernel overheads. Hence, the proposed scheme improves
the performance even in realistic in-memory workloads.

5.4 | Impact of DSM-friendly CC-Synch
mechanism

To verify the performance improvement provided by the
proposed CC-Synch implemented in a guest kernel

F I GURE 7 Results with multi-socket NUMA system:

(A) vanilla Ubuntu guest and (B) optimized guest.

508 AN ET AL.

compared with conventional spinlock, we implement two
simple kernel-level benchmarks.

The first benchmark generates multiple kernel
threads, and each thread attempts to increase a global
counter using either spinlock or CC-Synch for synchroni-
zation. Figure 9A shows the performance of the global
counter benchmark with the two synchronization tech-
niques. The x axis represents the number of kernel
threads, and the y axis represents the average execution
time. As the number of kernel threads increases, the per-
formance gap between spinlock and CC-Synch increases
rapidly. CC-Synch improves the performance by a factor
of 5.5 compared with spinlock for 32 kernel threads.

The second benchmark also spawns kernel threads,
which simultaneously update the data structure of a
shared linked list. Like the first benchmark, it uses either
spinlock or CC-Synch for synchronization. Figure 9B
compares the performance of the shared list update for
the two synchronization techniques, where the y axis rep-
resents the average execution time on a logarithmic scale.
As the system scale increases, the relative performance of

CC-Synch increases impressively over spinlock. Eventu-
ally, CC-Synch outperforms spinlock by a factor of 26 for
32 kernel threads.

5.5 | RDMA optimization

To highlight the impact of RDMA optimization on mem-
ory accesses in DSM, we measure the average latency of
associated function calls in the hypervisor. We evaluate
tdp_page_fault(), which is called during guest page
fault handling when an EPT violation occurs, and
krdma_receive(), which is an RDMA receive func-
tion called inside tdp_page_fault(). The workloads
and experimental environments used are the same as in
the previous experiment reported in Section 5.2.

Figure 10 compares the results of the existing
GiantVM and proposed architecture with RDMA optimi-
zation. The proposed architecture improves the perfor-
mance by approximately 67% for krdma_receive()
and 17% for tdp_page_fault() compared with
GiantVM. GiantVM uses a poll/sleep mechanism for both

F I GURE 9 Performance improvement with DSM-friendly CC-

Synch over spinlock synchronization: (A) global counter update

and (B) shared list update.
F I GURE 8 In-memory KVS benchmark results: (A) GiantVM

and (B) proposed architecture.

AN ET AL. 509

 22337326, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.2023-0056 by Jiyeon Y

u - E
lectronics and T

elecom
m

unications , W
iley O

nline L
ibrary on [16/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the requester and responder during RDMA communica-
tion, whereas the proposed architecture applies selective
busy wait to reduce the latency with marginal CPU over-
heads. The average latency of a callee, krdma_receive
(), is longer than that of a caller, tdp_page_faults
(). This is because tdp_page_fault()selectively calls
krdma_receive()only when it requires remote mem-
ory access, and its latency becomes negligible for local
accesses.

5.6 | Results for standard benchmarks

To verify the performance of the proposed scheme under
reliable standard benchmarks, we evaluate our architec-
ture using the PARSEC parallel benchmark suite [4] and
NAS Parallel Benchmarks (NPB) [5]. We choose three
workloads from PARSEC, namely, blackscholes, fluidani-
mate, and ferret, and three workloads from NPB, namely,
CG, FT, and MG. All the workloads are compiled without
modification. For PARSEC, pthread is used for parallel
execution and native datasets are used as inputs. NPB
workloads are compiled with OpenMP and a class B,
except for CG with a class C. Figure 11 shows execution
time of the benchmarks with GiantVM and the proposed
architecture. Due to wide variations in execution times,
the results of the proposed architecture are normalized to
those of GiantVM. The proposed architecture offers supe-
rior performance from 9% to 48% and by approximately
19% on average compared with GiantVM. The results
represent end-to-end performance, including disk input/
output operations as well as initialization and wrap-up
phases, and the proportion of memory operations is smal-
ler than that in synthetic workloads. Accordingly, the
amount of improvement becomes relatively small com-
pared with that obtained from the memory-intensive
workload reported in Section 5.2. However, we verify that

memory access performance with each of the benchmark
is enhanced owing to the optimized guest kernel and
memory management of DSM.

6 | RELATED WORK

DSM integrates physically divided memory devices into a
single address space and has long been studied at both
the software and hardware levels [6-8]. IVY [7] is a
software-based DSM technology that uses a dynamic dis-
tributed manager for memory coherence, thereby
enabling the page owner to be located with only one mes-
saging process. However, it has a problem with messag-
ing overheads owing to the sequential consistency model.
TreadMarks [6] is another software-based DSM technol-
ogy that follows a lazy release constant model to reduce
communication overheads. Nevertheless, the limitation
of most conventional DSM technologies is that the appli-
cation of a strict memory consistency model to ensure
programming interface compatibility leads to poor perfor-
mance, whereas the application of a relaxed consistency
model to ensure high performance impairs programma-
bility. Modern DSM technologies attempt to achieve high
performance by using emerging hardware technologies
such as RDMA [9] or persistent memory [10]. However,
these technologies still fail to ensure the complete com-
patibility of the programming interface and have been
evaluated under limited workloads.

Open-source single system image technologies such
as Kerrighed [11] and openMOSIX [12] have been intro-
duced. These technologies support load balancing
through the migration of processes or threads between
physically separated nodes. However, they are implemen-
ted at the level of the host OS running on bare-metal
hardware and have limitations on the choice of OSs.
Moreover, their development activities stopped a long
time ago, hindering their use in modern OSs.

F I GURE 1 1 Performance for standard benchmarks.

F I GURE 1 0 Performance of RDMA optimization.

510 AN ET AL.

Resource disaggregation technologies that enable
more flexible and efficient use and management of hard-
ware resources have been recently introduced with the
advent of fast interconnect and network fabric. EMP [13]
is a hypervisor-based memory disaggregation technology
that can access memory in a remote node connected via
InfiniBand using RDMA. It guarantees the transparency
of existing user applications and guest VMs and supports
elastic blocks, thereby enabling dynamic adjustment of
the memory block size to be fitted according to locality.
Remote regions [14] is another disaggregated memory
system technology that enables user-friendly file abstrac-
tion instead of difficult-to-use RDMA verbs. LegoOS [15]
is a new OS technology for managing disaggregated sys-
tems, including major hardware resources such as CPU,
memory, and storage. It achieves the flexibility of man-
agement while showing comparable performance to
existing monolithic kernels.

Single-OS NUMA abstraction architectures integrate
physically disaggregated nodes into one VM through a
hypervisor. Commercial products include ScaleMP [16]
and TidalScale Software-Defined Server. TidalScale
products [17] can migrate vCPUs between remote nodes
and make decisions of migrating vCPUs and memory
pages for better performance based on machine learning
techniques. However, the internal details of these
commercial products are not open to the public.
vNUMA [18] and GiantVM [2] are available as open-
source technologies. vNUMA is implemented as a
type-1 hypervisor running on bare-metal hardware with-
out a host OS, but it can only support Itanium proces-
sors. GiantVM is implemented as a type-2 hypervisor
running on the host OS and leverages the IVY-based
DSM technology for discrete memory devices to be inte-
grated and shared by users. However, it suffers from
performance degradation owing to the lack of coordina-
tion between guest OS and hypervisor, especially when
accessing memory.

7 | CONCLUSIONS

We propose a scalable hypervisor-based single-OS
NUMA abstraction architecture with discrete hardware
resources. Both the hypervisor and guest kernel are
optimized for virtual NUMA environments to achieve
performance improvements focusing on memory.

We evaluate the proposed architecture and its
techniques, demonstrating performance improvement by
factors of 4.74 on average for memory-intensive multi-
thread workloads and by 19% on average with standard
parallel benchmarks compared with a state-of-the-art
open-source technology. In future work, we will perform

in-depth performance analyses of our architecture under
various workloads and for larger-scale systems. In addi-
tion, we will attempt to apply a DSM-friendly CC-Synch
mechanism to various synchronization points in a guest
kernel to evaluate its performance in practice.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Baik Song An https://orcid.org/0000-0002-4039-5380

REFERENCES
1. R. Jain, S. Cheng, V. Kalagi, V. Sanghavi, S. Kaul, M.

Arunachalam, K. Maeng, A. Jog, A. Sivasubramaniam, M. T.
Kandemir, and C. R. Das, Optimizing CPU performance for rec-
ommendation systems at-scale, (Proceedings of the 50th
Annual International Symposium on Computer Architecture,
Orlando, FL, USA), 2023, pp. 1–15.

2. J. Zhang, Z. Ding, Y. Chen, X. Jia, B. Yu, Z. Qi, and H. Guan,
GiantVM: a type-II hypervisor implementing many-to-one vir-
tualization, (Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments,
Association for Computing Machinery, Lausanne, Switzer-
land), 2020, pp. 30–44.

3. P. Fatourou and N. D. Kallimanis, Revisiting the combining
synchronization technique, (Proceedings of the 17th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Pro-
gramming, New Roleans, LA, USA) 2012, pp. 257–266.

4. C. Bienia, Benchmarking modern multiprocessors, Ph.D. Thesis,
Princeton University, 2011.

5. NASA, NAS parallel benchmarks. https://www.nas.nasa.gov/
software/npb.html. Accessed: 2023-08-15.

6. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenepoel, Treadmarks: shared
memory computing on networks of workstations, Computer 29
(1996), no. 2, 18–28.

7. K. Li and P. Hudak, Memory coherence in shared virtual mem-
ory systems, ACM Trans. Comput. Syst. 7 (1989), no. 4,
321–359.

8. Y. Zhou, L. Iftode, J. P. Sing, K. Li, B. R. Toonen, I. Schoinas,
M. D. Hill, and D. A. Wood, Relaxed consistency and coherence
granularity in DSM systems: a performance evaluation,
(Proceedings of the sixth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Association
for Computing Machinery, New York, NY, USA), 1997,
pp. 193–205.

9. J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, Latency-tolerant software distributed shared memory,
(2015 Usenix Annual Technical Conference (Usenix Atc 15),
Santa Clara, CA, USA), 2015, pp. 291–305.

10. Y. Shan, S.-Y. Tsai, and Y. Zhang, Distributed shared persistent
memory, (Proceedings of the 2017 Symposium on Cloud Com-
puting, Association for Computing Machinery, Santa Clara
CA, USA), 2017, pp. 323–337.

11. C. Morin, R. Lottiaux, G. Vallée, P. Gallard, D. Margery, J.-Y.
Berthou, and I. D. Scherson, Kerrighed and data parallelism:
cluster computing on single system image operating systems,

AN ET AL. 511

https://orcid.org/0000-0002-4039-5380
https://orcid.org/0000-0002-4039-5380
https://www.nas.nasa.gov/software/npb.html
https://www.nas.nasa.gov/software/npb.html

(IEEE International Conference on Cluster Computing
(CLUSTER 2004), San Diego, CA, USA), 2004, pp. 277–286.

12. M. Bar, Openmosix project. http://openmosix.org. Accessed:
2022-02-14.

13. K. Koh, K. Kim, S. Jeon, and J. Huh, Disaggregated cloud mem-
ory with elastic block management, IEEE Trans. Comput. 68
(2019), no. 1, 39–52.

14. M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S.
Novakovi�c, A. Ramanathan, P. Subrahmanyam, L. Suresh, K.
Tati, R. Venkatasubramanian, and M. Wei, Remote regions: a
simple abstraction for remote memory, (2018 Usenix Annual
Technical Conference (Usenix Atc 18), Boston, MA, USA),
2018, pp. 775–787.

15. Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, LegoOS: a dissemi-
nated, distributed OS for hardware resource disaggregation,
(13th Usenix Symposium on Operating Systems Design and
Implementation (OSDI 18), Carlsbad, CA, USA), 2018,
pp. 69–87.

16. ScaleMP, ScaleMP, Inc. http://www.scalemp.com. Accessed:
2021-05-31.

17. TidalScale, Tidalscale—scalable solutions for in-memory com-
puting. http://tidalscale.com. Accessed: 2022-02-14.

18. M. Chapman and G. Heiser, vNUMA: a virtual shared-memory
multiprocessor, (2009 Usenix Annual Technical Conference
(Usenix Atc 09), San Diego, CA, USA), 2009, pp. 349–362.

AUTHOR BIOGRAPHIES

Baik Song An received the BS and
MS degrees in computer science from
Seoul National University and the
PhD degree in computer science
from Texas A&M University. He is
currently a principal researcher of
the Electronics and Telecommunica-

tions Research Institute. His research interests include
system software, computer architectures, and large-
scale machine learning.

Myung Hoon Cha received the BS
and MS degrees in computer science
from Kyungpook National University,
Daegu, Republic of Korea, in 1995
and 1997, respectively. Since 2005, he
has been with the Electronics and
Telecommunications Research Insti-

tute, Daejeon, Republic of Korea, where he has worked
on developing the distributed parallel file system,

exascale file system, and memory-centric operating sys-
tem. He is currently a principal researcher. His main
research interests include artificial intelligence
computing systems, operating systems, and distributed
systems.

Sang-Min Lee received the PhD
degree in computer science from the
Korea Advanced Institute of Science
and Technology, Republic of Korea,
in 2019. Since 2002, he has been with
the Electronics and Telecommunica-
tions Research Institute, Daejeon,

Republic of Korea, where he has worked on develop-
ing the distributed parallel file system, exascale file
system, and memory-centric operating system. He is
currently a principal researcher.

Won Hyuk Yang received the BS
degree in computer science engineer-
ing from Konkuk University, Seoul,
Republic of Korea, in 2020. Since
2022, he has been studying computer
science engineering at POSTECH,
Pohang, Republic of Korea. His main

research interests include computer architectures and
memory systems.

Hong Yeon Kim received the PhD
degree in computer engineering from
Inha University, Incheon, Republic
of Korea, in 1999. Since 1999, he
joined the Electronics and Telecom-
munications Research Institute and
is currently working as a senior

researcher. His main research interests include oper-
ating systems, distributed computing, and artificial
intelligence.

How to cite this article: B. S. An, M. H. Cha,
S.-M. Lee, W. H. Yang, and H. Y. Kim, Providing
scalable single-operating-system NUMA abstraction
of physically discrete resources, ETRI Journal 46
(2024), 501–512. DOI 10.4218/etrij.2023-0056.

512 AN ET AL.

http://openmosix.org
http://www.scalemp.com
http://tidalscale.com
info:doi/10.4218/etrij.2023-0056

