DOI QR코드

DOI QR Code

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology) ;
  • Khuong Ho-Van (Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology)
  • Received : 2023.03.27
  • Accepted : 2023.06.14
  • Published : 2024.06.20

Abstract

This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

Keywords

Acknowledgement

This research was funded by the Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2023-20-08.

References

  1. A. Y. Alhilal, B. Finley, T. Braud, D. Su, and P. Hui, Street smart in 5G: Vehicular applications, communication, and computing, IEEE Access 10 (2022), 105631-105656. https://doi.org/10.1109/ACCESS.2022.3210985
  2. B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar, Deep learning-aided 6G wireless networks: A comprehensive survey of revolutionary PHY architectures, IEEE Open J. Commun. Soc. 3 (2022), 1749-1809. https://doi.org/10.1109/OJCOMS.2022.3210648
  3. X. Bai and X. Gu, NOMA assisted semi-grant-free scheme for scheduling multiple grant-free users, IEEE Syst. J. 17 (2023), no. 2, 3294-3305.
  4. J. Li, H. H. Chen, and Q Guo, On the performance of NOMA systems with different user grouping strategies, IEEE Wire. Commun. To appear.
  5. M. M. Fakharian, RF Energy harvesting using high impedance asymmetric antenna array without impedance matching network, Radio Sci. 56 (2021), no. 3, 1-10. https://doi.org/10.1029/2020RS007103
  6. N. A. Eltresy, M. Abd Elhamid, D. M. Elsheakh, H. M. Elhennawy, and E. A. Abdallah, Silver sandwiched ITO based transparent antenna array for RF energy harvesting in 5G mid-range of frequencies, IEEE Access 9 (2021), 49476-49486. https://doi.org/10.1109/ACCESS.2021.3069409
  7. D. Wang, F. Zhou, and V. C. Leung, Primary privacy preserving with joint wireless power and information transfer for cognitive radio networks, IEEE Trans. Cog. Commun. Netw. 6 (2020), no. 2, 683-693. https://doi.org/10.1109/TCCN.2019.2952885
  8. L. Ge, G. Chen, Y. Zhang, J. Tang, J. Wang, and J. A. Chambers, Performance analysis for multihop cognitive radio networks with energy harvesting by using stochastic geometry, IEEE IoT J. 7 (2020), no. 2, 1154-1163.
  9. N. Pham-Thi-Dan, K. Ho-Van, T. Do-Dac, S. Vo-Que, and S. Pham-Ngoc, Security analysis for cognitive radio network with energy scavenging capable relay over Nakagami-m fading channels, (International Symposium on Electrical and Electronics Engineering, Ho Chi, Minh, Vietnam), 2019, pp. 68-72.
  10. M. Bouabdellah, F. El Bouanani, P. C. Sofotasios, S. Muhaidat, D. B. Da Costa, K. Mezher, H. Ben-Azza, and G. K. Karagiannidis, Cooperative energy harvesting cognitive radio networks with spectrum sharing and security constraints, IEEE Access 7 (2019), 173329-173343.
  11. F. Khennoufa, A. Khelil, K. Rabie, H. Kaya, and X. Li, An efficient hybrid energy harvesting protocol for cooperative NOMA systems: Error and outage performance, Phys. Commun. 58 (2023), 1-12.
  12. N. K. Largani and B. Akhbari, Enhancing secrecy performance of energy harvesting NOMA systems using IoT user scheduling under untrusted users, IET Commun. 16 (2022), 2208-2218. https://doi.org/10.1049/cmu2.12475
  13. S. Solanki, P. K. Upadhyay, D. B. Da Costa, H. Ding, and J. M. Moualeu, Performance analysis of piece-wise linear model of energy harvesting-based multiuser overlay spectrum sharing networks, IEEE Open J. Commun. Soc. 1 (2020), 1820-1836. https://doi.org/10.1109/OJCOMS.2020.3038012
  14. D. Wang, F. Rezaei, and C. Tellambura, Performance analysis and resource allocations for a WPCN with a new nonlinear energy harvester model, IEEE Open J. Commun. Soc. 1 (2020), 1403-1424. https://doi.org/10.1109/OJCOMS.2020.3022316
  15. L. Ni, X. Da, H. Hu, Y. Yuan, Z. Zhu, and Y. Pan, Outage-constrained secrecy energy efficiency optimization for CRNs with non-Linear energy harvesting, IEEE Access 7 (2019), 175213-175221. https://doi.org/10.1109/ACCESS.2019.2957397
  16. M. Babaei, U. Aygolu, M. Baaran, and L. Durak-Ata, BER performance of full-duplex cognitive radio network with nonlinear energy harvesting, IEEE Trans. Green Commun. Netw. 4 (2020), no. 2, 448-460. https://doi.org/10.1109/TGCN.2020.2990882
  17. D. Wang and S. Men, Secure energy efficiency for NOMA based cognitive radio networks with nonlinear energy harvesting, IEEE Access 6 (2018), 62707-62716.
  18. F. Wang and X. Zhang, Secure resource allocation for polarization-based non-linear energy harvesting over 5G cooperative CRNs, IEEE Wire. Commun. Lett. To appear.
  19. Z. Zhu, N. Wang, W. Hao, Z. Wang, and I. Lee, Robust beamforming designs in secure MIMO SWIPT IoT networks with a nonlinear channel model, IEEE IoT J. 8 (2021), no. 3, 1702-1715.
  20. Y. Jiang, M. K. Varanasi, and J. Li, Performance analysis of ZF and MMSE equalizers for MIMO systems: An in-depth study of the high SNR regime, IEEE Trans. Info. The. 57 (2011), no. 4, 2008-2026. https://doi.org/10.1109/TIT.2011.2112070
  21. A. Khazali, D. Tarchi, M. G. Shayesteh, H. Kalbkhani, and A. Bozorgchenani, Energy efficient uplink transmission in cooperative mmWave NOMA networks with wireless power transfer, IEEE Trans. Veh. Tech. 71 (2022), no. 1, 391-405. https://doi.org/10.1109/TVT.2021.3124076
  22. C. K. Singh, V. Singh, P. K. Upadhyay, and M. Lin, Energy harvesting in overlay cognitive NOMA systems with hardware impairments, IEEE Sys. J. 16 (2022), no. 2, 2648-2659. https://doi.org/10.1109/JSYST.2021.3082552
  23. A. K. Shukla, V. Singh, P. K. Upadhyay, A. Kumar, and J. M. Moualeu, Performance analysis of energy harvesting-assisted overlay cognitive NOMA systems with incremental relaying, IEEE OJCOMS 2 (2021), 1558-1576.
  24. Y. Liu, Y. Ye, H. Ding, F. Gao, and H. Yang, Outage performance analysis for SWIPT-based incremental cooperative NOMA networks with non-linear harvester, IEEE Commun. Lett. 24 (2020), no. 2, 287-291. https://doi.org/10.1109/LCOMM.2019.2955951
  25. Q. N. Le, A. Yadav, N. P. Nguyen, O. A. Dobre, and R. Zhao, Full-duplex non-orthogonal multiple access cooperative overlay spectrum-sharing networks with SWIPT, IEEE Trans. Green Commun. Netw. 5 (2021), no. 1, 322-334. https://doi.org/10.1109/TGCN.2020.3036026
  26. X. Liu, Y. Guo, and T. S. Durrani, Simultaneous wireless information and power transfer based on symbol allocation for GFDM-NOMA cooperative communications, IEEE Wire. Commun. Lett. 11 (2022), no. 2, 333-337. https://doi.org/10.1109/LWC.2021.3127243
  27. D. T. Do, A. T. Le, Y. Liu, and A. Jamalipour, User grouping and energy harvesting in UAV-NOMA system with AF/DF relaying, IEEE Trans. Veh. Tech. 70 (2021), no. 11, 11855-11868. https://doi.org/10.1109/TVT.2021.3116101
  28. K. Agrawal, M. F. Flanagan, and S. Prakriya, NOMA with battery-assisted energy harvesting full-duplex relay, IEEE Trans. Veh. Tech. 69 (2020), no. 11, 13952-13957. https://doi.org/10.1109/TVT.2020.3021085
  29. L. Ma, E. Li, and Q Yang, On the performance of full-duplex cooperative NOMA with non-linear EH, IEEE Access 9 (2021), 145968-145976. https://doi.org/10.1109/ACCESS.2021.3124090
  30. V. Aswathi and A. V. Babu, Outage and throughput analysis of full-duplex cooperative NOMA system with energy harvesting, IEEE Trans. Veh. Tech. 70 (2021), no. 11, 11648-11664. https://doi.org/10.1109/TVT.2021.3112596
  31. Q. Si, M. Jin, T. A. Tsiftsis, N. Zhao, and X. Wang, Cooperative SM-based NOMA scheme with SWIPT, IEEE Trans. Veh. Tech. 70 (2021), no. 6, 6195-6199. https://doi.org/10.1109/TVT.2021.3076565
  32. C. E. Garcia, M. R. Camana, and I Koo, Low-complexity PSO-based resource allocation scheme for cooperative nonlinear SWIPT-enabled NOMA, IEEE Access 10 (2022), 34207-34220. https://doi.org/10.1109/ACCESS.2022.3162838
  33. T. N. Tran, T. P. Vo, P. Fazio, and M. Voznak, SWIPT model adopting a PS framework to aid IoT networks inspired by the emerging cooperative NOMA technique, IEEE Access 9 (2021), 61489-61512. https://doi.org/10.1109/ACCESS.2021.3074351
  34. X. Li, Q. Wang, M. Liu, J. Li, H. Peng, M. J. Piran, and L. Li, Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors, IEEE IoT J. 8 (2021), no. 7, 5453-5467.
  35. S. Bisen, P. Shaik, and V Bhatia, On performance of energy harvested cooperative NOMA under imperfect CSI and imperfect SIC, IEEE Trans. Veh. Tech. 70 (2021), no. 9, 8993-9005. https://doi.org/10.1109/TVT.2021.3099067
  36. C. Zhai, Y. Li, X. Wang, and Z. Yu, Nonorthogonal multiple access with energy harvesting-based alternate relaying, IEEE Syst. J. 16 (2022), no. 1, 327-338.
  37. R. Lei, D. Xu, and I. Ahmad, Secrecy outage performance analysis of cooperative NOMA networks with SWIPT, IEEE Wire. Commun. Lett. 10 (2021), no. 7, 1474-1478. https://doi.org/10.1109/LWC.2021.3070429
  38. X. Li, J. Li, and L. Li, Performance analysis of impaired SWIPT NOMA relaying networks over imperfect Weibull channels, IEEE Syst. J. 14 (2020), no. 1, 669-672.
  39. M. Aldababsa and E. Basar, Joint transmit-and-receive antenna selection system for MIMO-NOMA with energy harvesting, IEEE Syst. J. 16 (2022), no. 3, 4139-4148.
  40. B. Lyu, P. Ramezani, D. T. Hoang, and A. Jamalipour, IRS-assisted downlink and uplink NOMA in wireless powered communication networks, IEEE Trans. Veh. Tech. 71 (2022), no. 1, 1083-1088. https://doi.org/10.1109/TVT.2021.3126013
  41. Q. Wu, X. Zhou, and R. Schober, IRS-assisted wireless powered NOMA: Do we really need different phase shifts in DL and UL, IEEE Wire. Commun. Lett. 10 (2021), no. 7, 1493-1497. https://doi.org/10.1109/LWC.2021.3072502
  42. D. Zhang, Q. Wu, M. Cui, G. Zhang, and D. Niyato, Throughput maximization for IRS-assisted wireless powered hybrid NOMA and TDMA, IEEE Wire. Commun. Lett. 10 (2021), no. 9, 1944-1948. https://doi.org/10.1109/LWC.2021.3087495
  43. F. D. Ardakani, R. Huang, and V. W. Wong, Joint device pairing, reflection coefficients, and power control for NOMA backscatter systems, IEEE Trans. Veh Tech. 71 (2022), no. 4, 4396-4411. https://doi.org/10.1109/TVT.2022.3148722
  44. F. Zhao, W. Xu, and W. Xiang, Integrated satellite-terrestrial networks with coordinated C-NOMA and relay transmission, IEEE Sys. J. 16 (2022), no. 4, 5270-5280. https://doi.org/10.1109/JSYST.2022.3144457
  45. Study on Downlink multiuser superposition transmission for LTE, 3GPP, 2015. Shanghai, China.
  46. G. Chen, L. Qiu, and C. Ren, On the performance of cluster-based MIMO NOMA in multi-cell dense networks, IEEE Trans. Commun. 68 (2020), no. 8, 4773-4787. https://doi.org/10.1109/TCOMM.2020.2988680
  47. Z. Ding, P. Fan, and H. V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions, IEEE Trans. Veh. Tech. 65 (2016), 6010-6023. https://doi.org/10.1109/TVT.2015.2480766
  48. N. T. Thomopoulos, Essentials of Monte Carlo simulation: Statistical methods for building simulation models, Springer, New York Heidelberg Dordrecht London, 2013.
  49. A. Hakimi, M. Mohammadi, Z. Mobini, and Z. Ding, Full-duplex non-orthogonal multiple access cooperative spectrum-sharing networks with non-linear energy harvesting, IEEE Trans. Veh. Tech. 69 (2020), no. 10, 10925-10936. https://doi.org/10.1109/TVT.2020.3000995
  50. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, 6th ed., Academic, San Diego, CA, 2000.
  51. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Tenth printing ed, U.S. Government Printing Office, Washington, DC, USA, 1972.