DOI QR코드

DOI QR Code

Trends and Prospects in Super-realistic Metaverse Visualization Technologies

초실감 메타버스 시각화 기술 동향과 전망

  • W.S. Youm ;
  • C.W. Byun ;
  • C.M. Kang ;
  • K.J. Kim ;
  • Y.D. Kim ;
  • D.H. Ahn
  • 염우섭 (실감디스플레이연구실 ) ;
  • 변춘원 (실감디스플레이연구실 ) ;
  • 강찬모 (실감디스플레이연구실 ) ;
  • 김국주 (실감디스플레이연구실 ) ;
  • 김용덕 (실감디스플레이연구실 ) ;
  • 안대현 (실감디스플레이연구실 )
  • Published : 2024.04.01

Abstract

Wearable metaverse devices have sparked enthusiasm as innovative virtual computing user interfaces by addressing a major source of user discomfort, namely, motion-to-photon latency. This kind of latency occurs between the user motion and screen update. To enhance the realism and immersion of experiences using metaverse devices, the vergence-accommodation conflict in stereoscopic image representation must be resolved. Ongoing research aims to address current challenges by adopting vari-focal, multifocal, and light field display technologies for stereoscopic imaging. We explore current trends in research with emphasis on multifocal stereoscopic imaging. Successful metaverse visualization services require the integration of stereoscopic image rendering modules and content encoding/decoding technologies tailored to these services. Additionally, real-time video processing is essential for these modules to correctly and timely process such content and implement metaverse visualization services.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부 및 정보통신기획평가원(IITP)의 과기정통부 정보통신방송연구개발사업의 일환으로 수행된 연구임[No. 2022-0-00026, 초실감 메타버스 서비스를 위한 입체영상 디바이스 기술 개발].

References

  1. Computerworld, 2024 Will Be A Big Year For AR/VR, But Mainstream Adoption Will Lag, 2024, https://www.computerworld.com/article/3712164/2024-will-be-a-big-year-for-ar-vr-but-mainstream-adoption-will-lag.html 
  2. T. Shibata et al., "The zone of comport: Predicting visual discomfort with stereo displays," J. Vis., vol. 11, no. 8, 2011. 
  3. Wikipedia, Vergence-Accommodation Conflict, Sept. 2022, https://en.wikipedia.org/wiki/Vergence-accommodation_conflict 
  4. Y. Ryu and E. Ryu, "Overview of motion-to-photon latency reduction for mitigating VR sickness," KSII TIIS, vol. 15, no. 7, 2021, pp. 2531-2546.  https://doi.org/10.3837/tiis.2021.07.013
  5. Magic Leap 2 Overview, Distance to View Digital Content, https://www.magicleap.com/magic-leap-2 
  6. L. Xiao et al., "DeepFocus: Learned image synthesis for computational display," ACM Trans. Graph., vol. 37, no. 6, 2018. 
  7. J. March et al., "Impact of correct and simulated focus cues on perceived realism," in Proc. SA, (Daegu, Rep. of Korea), Nov. 2022, pp. 1-9. 
  8. T. Zhan et al., "Multifocal displays: Review and prospect," PhotoniX, vol. 1, no. 10, 2020. 
  9. S. Suyama et al., "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys., vol. 39, 2000, pp. 480-484.  https://doi.org/10.1143/JJAP.39.480
  10. S. Liu, D. Cheng, and H. Hua, "An optical see-through head mounted display with addressable focal planes," in Proc. IEEE Int. Symp. Mixed Augmented Reality, (Cambridge, UK), Sept. 2008, pp. 33-42. 
  11. S. Liu and H. Hua, "Time-multiplexed dual-focal plane head-mounted display with a liquid lens," Opt. Lett., vol. 34, no. 11, 2009, pp. 1642-1644.  https://doi.org/10.1364/OL.34.001642
  12. S. Liu et al., "A novel prototype for an optical see-through head-mounted display with addressable focus cues," IEEE Trans. Vis. Comput. Graph., vol. 16, no. 3, 2009, pp. 381-393.  https://doi.org/10.1109/TVCG.2009.95
  13. P. Llull et al., "Design and optimization of a near-eye multifocal display system for augmented reality," Imaging Appl. Opt., 2015, article no. JTH3A.5. 
  14. J.H.R. Chang et al., "Towards multifocal displays with dense focal stacks," ACM Trans. Graph., vol. 37, no. 6, 2018. 
  15. K. Rathinavel et al., "An extended depth-at-field volumetric near-eye augmented reality display," IEEE Trans. Vis. Comput. Graph., vol. 24, no. 11, 2018, pp. 2857-2866.  https://doi.org/10.1109/TVCG.2018.2868570
  16. S. Lee et al., "Tomographic near-eye displays," Nat. Commun., vol. 10, 2019. 
  17. W. Wu et al., "Content-adaptive focus configuration for near-eye multi-focal displays," in Proc. ICME, (Seattle, WA, USA), Jul. 2016. 
  18. S. Liu and H. Hua, "A systematic method for designing depth-fused multi-focal plane three-dimensional displays," Opt. Express., vol. 18, no. 11, 2010, pp. 11562-11573.  https://doi.org/10.1364/OE.18.011562
  19. S. Ravikumar et al., "Creating effective focus cues in multi-plane 3D displays," Opt. Express., vol. 19, no. 21, 2011, pp. 20940-20952.  https://doi.org/10.1364/OE.19.020940
  20. R. Narain et al., "Optimal presentation of imagery with focus cues on multi-plane displays," ACM Trans. Graph., vol. 34, no. 4, 2015. 
  21. O. Mercier et al., "Fast gaze-contingent optimal decompositions for multifocal displays," ACM Trans. Graph., vol. 36, no. 6, 2017. 
  22. J.M. Boyce et al., "MPEG immersive video coding standard," Proc. IEEE, vol. 109, no. 9, 2021, pp. 1521-1536.  https://doi.org/10.1109/JPROC.2021.3062590
  23. https://www.youtube.com/watch?v=x6AOwDttBsc 
  24. https://www.meta.com/ko-kr/blog/quest/reality-labs-research-display-systems-siggraph-2023-butterscotch-varifocal-flamera/ 
  25. Y. Zhao et al., "Retinal-resolution varifocal VR," in Proc. SIGGRAPH, (Los Angeles, CA, USA), Aug. 2023, pp. 1-3. 
  26. G. Kuo et al., "Perspective-correct VR passthrough without reprojection," in Proc. SIGGRAPH, (Los Angeles, CA, USA), Aug. 2023, pp. 1-9. 
  27. Y. Qin et al., "Split-lohmann multifocal displays," ACM Trans. Graph., vol. 42, no. 4, 2023. 
  28. K. Otao et al., "Light field blender: Designing optics and rendering methods for see-through and aerial near-eye display," in Proc. SA, (Bangkok, Thailand), Nov. 2017, pp. 1-4. 
  29. K. Bang et al., "Lenslet VR: Thin, flat and wide-FOV virtual reality display using fresnel lens and lenslet array," IEEE Trans. Vis. Comput. Graph., vol. 27, no. 5, 2021, pp. 2545-2554.  https://doi.org/10.1109/TVCG.2021.3067758
  30. M.C. Wapler and U. Wallrabe, "Ultra-fast and compact varifocal lens," in Proc. MEMS, (Seoul, Rep. of Korea), Jan. 2019. 
  31. M.C. Wapler, "Ultra-fast, high-quality and highly compact varifocal lens with spherical aberration correction and low power consumption," Opt. Express, vol. 28, no. 4, 2020, pp. 4973-4987.  https://doi.org/10.1364/OE.382472
  32. M.C. Wapler et al., "Aspherical high-speed varifocal mirror for miniature catadioptric objectives," Opt. Express, vol. 26, no. 5, 2018, pp. 6090-6102.  https://doi.org/10.1364/OE.26.006090
  33. D. Iwai et al., "Speeded-up focus control of electrically tunable lens by sparse optimization," Sci. Rep., vol. 9, no. 1, 2019. 
  34. A.G. Lopez-de-Haro et al., "Closed-loop experimental optimization of tunable lenses," Appl. Opt., vol. 61, no. 27, 2022, pp. 8091-8099. https://doi.org/10.1364/AO.467848