DOI QR코드

DOI QR Code

Extended Inductive Miner to Discover Semantic Annotated Process Model: A Variability-Based Approach

  • Aicha Khannat (Department of AlQualsadi Research Team ENSIAS, Mohammed V University of Rabat (UM5)) ;
  • Hanae Sbai (Department of Mathematics, Computer Science and Applications Laboratory, Hassan II University of Casablanca (UH2C)) ;
  • Laila Kjiri (Department of AlQualsadi Research Team ENSIAS, Mohammed V University of Rabat (UM5))
  • Received : 2024.03.24
  • Accepted : 2024.06.04
  • Published : 2024.12.30

Abstract

In recent years, the concept of a configurable process model has made many contributions, with the need for generic and reusable models. The high demand for this type of generic model is accompanied by quality requirements, as these models must be as comprehensive as possible to facilitate the task of customization. Many approaches exist to deal with configurable process models, especially in the field of process mining, including its three types of techniques: discovery, conformance, and enhancement. However, there is a lack of semantic representation in the resulting models. In this study, we propose a novel automated approach based on the extension of the Inductive Miner algorithm used to discover business process models. This method discovers a semantically annotated configurable process model using two ontologies: variability ontology and domain ontology-related concepts, which will improve and facilitate the configurable process model customization.

Keywords

References

  1. Amoury, S., & Bertet, K. (2023). [Process mining for the improvement of a serious game]. France. https://univ-rochelle.hal.science/hal-04117522/
  2. Assy, N., Gaaloul, W., & Defude, B. (2014, May 22-24). Mining configurable process fragments for business process design. In M. C. Tremblay, D. VanderMeer, M. Rothenberger, A. Gupta, & V. Yoon (Eds.), Advancing the impact of design science: Moving from theory to practice (pp. 209-224). Springer. https://doi.org/10.1007/978-3-319-06701-8_14
  3. Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V. (2013, June 17-18). Enhancing modeling and change support for process families through change patterns. In S. Nurcan, H. A. Proper, P. Soffer, J. Krogstie, R. Schmidt, T. Halpin, & I. Bider (Eds.), Enterprise, business-process and information systems modeling (pp. 246-260). Springer. https://doi.org/10.1007/978-3-642-38484-4_18
  4. Azouzi, S., Ghannouchi, S. A., & Brahmi, Z. (2017, December 18-20). Towards supporting modeling variability in e-learning application: A case study. In S. J. Horng (Ed.), 18th International conference on parallel and distributed computing, applications and technologies (pp. 488-494). IEEE Computer Society Conference Publishing Services. https://doi.org/10.1109/PDCAT.2017.00083
  5. Barbieri, L., Madeira, E., Stroeh, K., & van der Aalst, W. (2023). A natural language querying interface for process mining. Journal of Intelligent Information Systems, 61(1), 113-142. https://doi.org/10.1007/s10844-022-00759-9
  6. Berti, A., Kourani, H., Hafke, H., Li, C. Y., & Schuster, D. (2024). Evaluating large language models in process mining: Capabilities, benchmarks, evaluation strategies, and future challenges. https://arxiv.org/html/2403.06749v1
  7. Buijs, J. C. A. M., van Dongen, B. F., & van der Aalst, W. M. P. (2013, August 26-30). Mining configurable process models from collections of event logs. In F. Daniel, J. Wang, & B. Weber (Eds.), Business process management (pp. 33-48). Springer. https://doi.org/10.1007/978-3-642-40176-3_5
  8. Cairns, A. H., Ondo, J. A., Gueni, B., Fhima, M., Schwarcfeld, M., Joubert, C., & Khelifa, N. (2014). Using semantic lifting for improving educational process models discovery and analysis. Paper presented at the 4th International Symposium on Data-Driven Process Discovery and Analysis, Milan, Italy.
  9. Claes, J., & Poels, G. (2014). Merging event logs for process mining: A rule based merging method and rule suggestion algorithm. Expert Systems with Applications, 41(16), 7291-7306. https://doi.org/10.1016/j.eswa.2014.06.012
  10. Detro, S. P., Portela, E., Rocha, E. L., Panetto, H., & Lezoche, M. (2017). Configuring process variants through semantic reasoning in systems engineering. Insight, 20(4), 36-39. https://doi.org/10.1002/inst.12179
  11. El Faquih, L., & Fredj, M. (2017). Ontology-based framework for quality in configurable process models. Journal of Electronic Commerce in Organizations (JECO), 15(2), 48-60. https://doi.org/10.4018/JECO.2017040104
  12. El Faquih, L., Sbai, H., & Fredj, M. (2015). Configurable process models: A semantic validation. Paper presented at 2015 10th International Conference on Intelligent Systems: Theories and Applications, Rabat, Morocco. https://doi.org/10.1109/SITA.2015.7358436
  13. Fang, H., Liu, W., Wang, W., & Zhang, S. (2023). Discovery of process variants based on trace context tree. Connection Science, 35(1), 2190499. https://doi.org/10.1080/09540091.2023.2194578
  14. Gottschalk, F., van der Aalst, W. M. P., & Jansen-Vullers, M. H. (2007). Configurable process models - A foundational approach. In J. Becker & P. Delfmann (Eds.), Reference modeling: Efficient information systems design through reuse of information models (pp. 59-77). Physica-Verlag HD.
  15. Gottschalk, F., Wagemakers, T. A. C., Jansen-Vullers, M. H., van der Aalst, W. M. P., & La Rosa, M. (2009, June 8-12). Configurable process models: Experiences from a municipality case study. In P. Eck, J. Gordijn, & R. Wieringa (Eds.), Advanced information systems engineering (pp. 486-500). Springer. https://doi.org/10.1007/978-3-642-02144-2_38
  16. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199-220. https://doi.org/10.1006/knac.1993.1008
  17. Gunther, C. W., & van der Aalst, W. M. P. (2007, September 24-28). Fuzzy mining - Adaptive process simplification based on multi-perspective metrics. In G. Alonso, P. Dadam, & M. Rosemann (Eds.), Business process management (pp. 328-348). Springer. https://doi.org/10.1007/978-3-540-75183-0_24
  18. Hepp, M., Leymann, F., Domingue, J., Wahler, A., & Fensel, D. (2005). Semantic business process management: A vision towards using semantic web services for business process management. Paper presented at IEEE International Conference on e-Business Engineering (ICEBE'05), Beijing, China.
  19. Khannat, A., Sbai, H., & Kjiri, L. (2021). Configurable process mining: Semantic variability in event logs. In J. Filipe, M. Smialek, A. Brodsky, & S. Hammoudi (Eds.), Proceedings of the 23rd international conference on enterprise information systems - (Volume 1) (pp. 768-775). SciTePress. https://doi.org/10.5220/0010484207680775
  20. Khodayari Tehraninejad, D., & Khoshnevis, S. (2022). Proxima: Process mining for extracting configurable process models using software product line concepts. Journal of Computing and Security, 9(1), 1-29. https://doi.org/10.22108/jcs.2021.130065.1080
  21. La Rosa, M. (2009). Managing variability in process-aware information systems (doctoral dissertation). Queensland University of Technology, Brisbane, Australia.
  22. La Rosa, M., & Gottschalk, F. (2009, September 8). Synergia - Comprehensive tool support for configurable process models. In A. K. A. de Medeiros & B. Weber (Eds)., Business process management demonstration track 2009. CEUR.
  23. La Rosa, M., Aalst, W. M. P. V. D., Dumas, M., & Milani, F. P. (2017). Business process variability modeling: A survey. ACM Computing Surveys, 50(1), Article 2. https://doi.org/10.1145/3041957
  24. La Rosa, M., Dumas, M., ter Hofstede, A. H. M., & Mendling, J. (2011). Configurable multi-perspective business process models. Information Systems, 36(2), 313-340. https://doi.org/10.1016/j.is.2010.07.001
  25. La Rosa, M., Dumas, M., ter Hofstede, A. H., Mendling, J., & Gottschalk, F. (2007). Beyond control-flow: Extending business process configuration to resources and objects. https://eprints.qut.edu.au/215913/
  26. Lautenbacher, F., Bauer, B., & Forg, S. (2009). Process mining for semantic business process modeling. Paper presented at 2009 13th Enterprise Distributed Object Computing Conference Workshops, Auckland, New Zealand.
  27. Leemans, S. J. J. (2017). Robust process mining with guarantees. (doctoral dissertation). Eindhoven University of Technology, Eindhoven, Netherlands.
  28. Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2013, June 24-28). Discovering block-structured process models from event logs - A constructive approach. In J. M. Colom & J. Desel (Eds.), Application and theory of Petri nets and concurrency (pp. 311-329). Springer. https://doi.org/10.1007/978-3-642-38697-8_17
  29. Nykanen, O., Rivero-Rodriguez, A., Pileggi, P., Ranta, P. A., Kailanto, M., & Koro, J. (2015). Associating event logs with ontologies for semantic process mining and analysis. Paper presented at Proceedings of the 19th International Academic Mindtrek Conference, Tampere, Finland.
  30. Ozates, A., Akin, E., Bilgic, A., Akca, E., & Tastimur, C. (2024). Analysis of barrel electroplating line with process mining and petri-net model. Paper presented at 2024 International Conference on Computer, Electrical & Communication Engineering, Kolkata, India.
  31. Paquette, G. (2010). Ontology-based educational modelling - making IMS-LD visual. Technology, Instruction, Cognition and Learning, 7, 263-296.
  32. Pereira Detro, S., Santos, E. A. P., Panetto, H., Loures, E. D., Lezoche, M., & Cabral Moro Barra, C. (2020). Applying process mining and semantic reasoning for process model customisation in healthcare. Enterprise Information Systems, 14(7), 983-1009. https://doi.org/10.1080/17517575.2019.1632382
  33. Pohl, T. (2019). An inductive miner implementation for the PM4PY framework. https://www.pads.rwth-aachen.de/cms/pads/studium/abgeschlossene-abschlussarbeiten/2019/~fiwjs/an-inductive-miner-implementation-for-th/
  34. Ramos-Gutierrez, B., Varela-Vaca, A. J., Galindo, J. A., GomezLopez, M. T., & Benavides, D. (2021). Discovering configuration workflows from existing logs using process mining. Empirical Software Engineering, 26(1), 11. https://doi.org/10.1007/s10664-020-09911-x
  35. Rebmann, A., & van der Aa, H. (2022). Enabling semantics-aware process mining through the automatic annotation of event logs. Information Systems, 110, 102111. https://doi.org/10.1016/j.is.2022.102111
  36. Rosemann, M., & van der Aalst, W. M. P. (2007). A configurable reference modelling language. Information Systems, 32(1), 1-23. https://doi.org/10.1016/j.is.2005.05.003
  37. Schnieders, A., & Puhlmann, F. (2007). Variability modeling and product derivation in e-business process families. In W. Abramowicz & H. C. Mayr (Eds.), Technologies for Business Information Systems (pp. 63-74). Springer.
  38. Sharma, D. K., Hitesh, & Rao, V. (2014). Configurable business process modeling notation. Paper presented at 2014 IEEE International Advance Computing Conference, Gurgaon, India.
  39. van der Aalst, W. M. P., de Medeiros, A. K. A., & Weijters, A. J. M. M. (2005, June 20-25). Genetic process mining. In G. Ciardo & P. Darondeau (Eds.), Applications and theory of Petri nets 2005 (pp. 48-69). Springer. https://doi.org/10.1007/11494744_5
  40. van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. https://doi.org/10.1109/TKDE.2004.47
  41. Weijters, A. J. M. M., van der Aalst, W. M. P., & Alves de Medeiros A. K. (2006). Process mining with the Heuristics-Miner algorithm. BETA publicatie : Working papers, 166.