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Abstract 

Pressure sensors are essential equipment for precise measurements in industrial and research fields, requiring calibration and 

target value setting for each sample to ensure high accuracy. This study proposes an automated target value prediction method 

based on a polynomial regression model to enhance pressure sensor accuracy and evaluates its effectiveness. Experiments were 

conducted over a pressure range of 0 to 45 bar and a temperature range of -5°C to 60°C. By expanding the calibration points from 

the previous two to four, linearity error was improved from 0.380% to 0.116%. In the conventional method, theoretical output 

values were manually calculated based on LDO voltage, and target values were set accordingly. However, this study employed a 

method that uses Polynomial Features (degree=2) transformation followed by a Linear Regression model to automatically predict 

target values. This approach allowed samples to more precisely follow the target voltage. This study demonstrates that an 

automated target value setting with multiple calibration points can contribute to improving the accuracy of pressure sensor 

measurements.   
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1. Introduction12 
 

Pressure sensors are widely used in modern industry and 

research for various applications, and accurate, stable 

pressure measurement is essential to ensure system 

performance and safety. However, inaccuracies during the 

calibration and alignment processes can negatively impact 

not only measurement accuracy but also the consistency of 
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output values across multiple samples, potentially leading to 

decreased system reliability and overall performance 

degradation. Moreover, sensors may struggle to deliver 

accurate and consistent measurement results under varying 

environmental conditions (Tengis et al. 2024). Therefore, 

the process of calibrating sensors so that their output values 

consistently match target values is a critical research topic 

(Chen et al., 2019). 
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This paper proposes calibration and alignment methods to 

improve pressure sensor measurement accuracy and 

maintain output consistency across samples. In particular, 

this paper focused on alignment based on UDR (Universal 

Digital Readout) output values derived from LDO (Low 

Dropout Regulator) output values, rather than physical 

positioning adjustments. The UDR output values vary for 

each sample and are influenced by the LDO output values. 

Leveraging this characteristic, the calibration process was 

performed to ensure that the UDR output values of all 

samples within the pressure range accurately correspond to 

the target pressure values. 

The experiments in this paper were conducted within a 

pressure range of 0 bar to 45 bar and a temperature range of 

-5℃ to 60℃. Initially, calibration was performed using two 

pressure and temperature points, but this was later expanded 

to four points. As a result, the linearity error was 

significantly improved from 0.380% to 0.116%, and the 

consistency of UDR output values across samples was 

enhanced. 

In conventional methods, such as using LDO voltage-

based theoretical calculations, target values were set 

manually for each sample, which limited accuracy and 

efficiency in maintaining consistent output across varying 

conditions. To improve this, the paper introduced a 

polynomial regression model to automatically predict target 

values. By utilizing Polynomial Features (degree = 2) and 

the Linear Regression model to transform and analyze the 

voltage data, the process was automated to ensure that the 

UDR output values consistently followed the target voltage 

values as the LDO output values changed.  
This paper suggests the potential for improving the 

consistency of outputs across samples by improving the 

calibration and alignment methods based on UDR output 

values influenced by LDO output values. It also proposes 

that increasing the number of pressure and temperature 

points beyond the current four could yield even better results. 

 
 

2. Literature Review  
 

2.1. Pressure-Temp Data Collection 

 
In order to accurately measure and collect pressure and 

temperature data, a pressure sensor, a PTC (Positive 

Temperature Coefficient) temperature sensor, and an SSC 

(Sensor Signal Conditioner) chip capable of collecting and 

processing sensor data are essential. Conventional industrial 

pressure sensors were unsuitable for our system due to size 

and cost constraints, so we selected the KELLER Series 10L 

MEMS pressure sensor, which offered compact size and 

high precision suitable for our application. This sensor is 

compact yet offers high precision, and it is capable of 

reliably measuring pressure in various environments. 

For temperature measurement, we used a PTC sensor. The 

PTC sensor has a characteristic where its resistance changes 

with temperature, enabling accurate detection of 

temperatures in the range of -5℃ to 60℃. This feature not 

only enhances the reliability of the entire measurement 

system but also contributes effectively to temperature 

calibration. 

Traditionally, analog signal processing systems have been 

used to process pressure and temperature data, but such 

systems are susceptible to noise and struggle to maintain 

accuracy. Therefore, we employed the ZSSC4151C SSC 

chip to convert the analog signals collected from the MEMS 

pressure sensor and PTC temperature sensor into digital 

signals. This chip not only converts analog signals into 

digital form but also supports functions such as signal 

amplification, calibration, and stable transmission of sensor 

data. 

Figure 1 presents the ZSSC4151C block diagram, 

showing connections between the pressure and temperature 

sensors and the chip, where analog signals are converted to 

digital form. Additionally, it shows that the chip supports 

various interfaces and functions, playing a crucial role in 

enhancing the accuracy and reliability of the sensor data. 

The pressure sensor PCB we designed is equipped with 

the KELLER Series 10L MEMS pressure sensor and the 

PTC temperature sensor, with the ZSSC4151C chip located 

at the center, collecting and processing data from the sensors. 

This sensor module is designed to accurately collect and 

digitize pressure and temperature data, which is then 

transmitted to a microcontroller. 

Through this configuration, we were able to collect 

pressure and temperature data stably and consistently across 

various environmental conditions. 

 

 
Figure 1: Block Diagram of the ZSSC4151C 

 

2.2. Polynomial Regression-Based Model 
 

A second-degree polynomial regression model was 

employed in the calibration process of pressure sensors to 

accurately represent the nonlinear relationship between 

voltage data and target output values. Polynomial regression, 
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used in machine learning and statistics, is a statistical 

method that leverages the relationships among two or more 

quantitative variables to predict one variable based on others 

(Park, 2016). By defining the form of a polynomial function 

in advance and using the least squares method to determine 

the regression coefficients, polynomial regression provides 

a straightforward way to model data. This approach is 

advantageous due to its conceptual simplicity and ease of 

numerical calculation (Park et al., 2013). Through 

polynomial regression, nonlinear relationships between data 

can be modeled (Kwak et al., 2024). As such, the 

polynomial regression model is an extended form of linear 

regression, capable of effectively modeling complex 

nonlinear relationships between inputs and outputs by 

incorporating polynomial terms of the input variables. In 

this study, voltage data was collected under various pressure 

and temperature conditions using a DAQ (Data Acquisition) 

device. The collected voltage data was digitized based on 

UDR (Universal Digital Readout) values from the SSC 

(Sensor Signal Conditioner) chip. The UDR is the maximum 

output value that can be provided by the SSC chip and 

represents the digital value converted from the analog signal 

measured by the pressure sensor. This data was then 

compared with the target output values during the 

calibration process and used as training data for the 

polynomial regression model. 

The second-degree polynomial regression model includes 

not only the first-degree term of the input voltage data but 

also the second-degree term, allowing it to accurately 

capture the nonlinear relationship between the voltage and 

UDR values. Equation 1 and Figure 2 illustrates the 

mathematical representation of this polynomial regression 

model, showing how the input voltage data is transformed 

into polynomial features and linked to the target UDR values. 

The model first takes in the input voltage data, calculates 

up to the squared terms, and generates the most suitable 

prediction for the target output value. By doing so, it 

effectively captures the complex interactions between the 

voltage and UDR values, which a simple linear model would 

be unable to explain. 

During the training process of the polynomial regression 

model, the coefficients (β0, β1, β2) are adjusted to minimize 

the error between the input data and the target output values. 

The least squares method is used to minimize the error 

between the predicted and actual target values, thereby 

building an optimal model. Through this training process, 

the model learns to accurately predict UDR output values 

for a wide range of voltage inputs. 

 

y = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 

(1) 

 

 

Figure 2: Polynomial Regression Graph 
 

 

2.3. Related Research 

 
Recent studies on pressure sensor calibration have been 

actively progressing, with polynomial regression analysis 

playing a key role in addressing the nonlinearity of pressure 

sensors. Zou et al. (2023) proposed a method for 

determining target values suitable for each sample by 

applying a polynomial regression model based on the output 

values of pressure sensors. In their study, they achieved 

improved calibration accuracy by modeling the nonlinear 

relationships under various pressure conditions. 

 

In line with this, Dikbaş (2024) demonstrated the utility 

of polynomial regression in forecasting extreme 

precipitation events, emphasizing its capacity to handle 

nonlinear data in atmospheric conditions. This approach is 

relevant to pressure sensor calibration, as it suggests that 

polynomial regression can also be effective in managing the 

complexities of sensor outputs under diverse environmental 

parameters, thereby enhancing predictive accuracy (Dikbaş, 

2024). 

 

Additionally, many studies have emphasized that 

increasing the number of pressure and temperature points is 

essential for improving sensor calibration effectiveness. 

These studies clearly demonstrate that both polynomial 

regression analysis and the increase in calibration points 

play critical roles in pressure sensor calibration. This study 

follows the trend of such existing research, aiming to 

explore methodologies for improving the performance of 

pressure sensors 

 
 

3. Research Methods  
 

3.1. Overall Structure 

 
Figure 3 shows the overall system structure. Inside the 

temperature chamber, the SSC chip and MEMS cell are 

installed, and the Evaluation Kit communicates with the SSC 

chip via OWI (One-Wire Interface). Data collection is 

performed through the Evaluation Kit, which collects 
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pressure data, and the collected data is passed to the data 

analysis module after calibration. The data analysis module 

calculates ideal output values based on pressure, reports 

results after calibration, and calculates linearity. All these 

processes are controlled through the GUI. 

 

 
Figure 3: Overall System structure 

 

3.2. GUI 
 

Figure 4 shows the structure of the data collection and 

results program used in this study. This program has the 

capability to automatically adjust pressure and temperature 

according to user-specified pressure and temperature points. 

Control for obtaining the digital values of the SSC (Sensor 

Signal Conditioner) chip is performed using software 

provided by Renesas. 

The program, developed in Python, enables efficient data 

collection and processing using various libraries and 

modules. After completing calibration at the user-specified 

temperature and pressure points, the results can be 

immediately viewed through the program. Notably, the 

method for automatically predicting target values using the 

polynomial regression model is also implemented in the GUI. 

By utilizing the Polynomial Features (degree=2) and Linear 

Regression models, the voltage data is transformed and 

analyzed to automate the process of ensuring that the UDR 

(Universal Digital Readout) output values consistently match 

the target voltage values as the LDO output changes. 

This feature greatly improves system efficiency by 

enabling users to set experimental conditions and verify 

calibration results in real time. The program enhances 

reliability during data collection and reduces the workload 

for researchers. As a result, pressure sensor calibration tasks 

can be conducted more precisely and swiftly, playing a 

crucial role in ensuring the consistency of research outcomes. 

 

 
Figure 4: GUI for Calibration and Verification 

 

3.3. Calibration and Automatic Target Process 
 

In order to achieve accurate calibration of the pressure sensor, 

data was collected while progressively increasing the number 

of temperature and pressure points. This was done to improve 

calibration precision and analyze sensor responses under 

various environmental conditions. Data collection began with 

2 temperature points and 2 pressure points, followed by 2 

temperature points with 3 pressure points, and then 2 

temperature points with 4 pressure points. Subsequently, data 

was collected using 3 temperature points with 2, 3, and 4 

pressure points, and finally, 4 temperature points with 2, 3, and 

4 pressure points, securing a total of 9 different combinations 

of data. 

Although the current technical limitations restrict pressure 

and temperature points to four, tests with six or eight points are 

feasible, albeit time-consuming. Additionally, with the current 

algorithm, increasing from two or four points to six or eight 

points does not yield significant improvements, indicating a 

need for deeper research into this area. However, it suggests 

that adding additional points beyond the current four pressure 

and temperature points could potentially yield even better 

results. 

Additionally, an automatic target-setting method using UDR 

(Universal Digital Readout) values was introduced. Based on 

UDR values, voltage data was acquired, and a polynomial 

regression model was used to automatically set the target values. 

A second-degree polynomial was applied using Polynomial 

Features and Linear Regression to build the regression model, 

which modeled the nonlinear relationship between the voltage 

and target values. 

Tables 1 and 2 illustrate the calibration digital values 
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according to the number of pressure and temperature points, 

highlighting the key differences. The remaining tables, which 

present additional data for various conditions, are provided in 

the Appendix.  

 
Table 1: 2 temperature points and 2 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

70 
0 0.007 0.0974 3050 

95.36 45.0 45.0893 20302 

 
Table 2: 4 temperature points and 4 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

10 

0 0.007 0.0974 3184 

14184 
21.11 10.0 10.0902 7542 

74.16 35.0 35.0896 18544 

95.36 45.0 45.0893 22988 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

40 
0 0.007 0.0974 3114 

18714 
95.36 45.0 45.0893 21562 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 

 

4. Results and Discussion 
 

4.1. Results 
 

This study presents the measurement results based on the 

proposed increase in pressure and temperature points. First, the 

effect of progressively increasing the number of temperature 

and pressure points on the sensor's linearity was analyzed. 

Figures 5 and 6 depict the linearity error results for different 

combinations of temperature and pressure points, with Figure 7 

showing the results for 2 temperature points and 2 pressure 

points, and Figure 8 showing the results for 4 temperature 

points and 4 pressure points. The remaining figures, which 

cover additional combinations, are provided in the Appendix. 

Data collection began with 2 temperature points and 4 pressure 

points, followed by 3 temperature points and 2, 3, and 4 

pressure points, and finally 4 temperature points with 2, 3, and 

4 pressure points. 

Analysis indicates that sensor linearity gradually decreases 

as the number of temperature and pressure points increases. 

The measured linearity values are as follows: 0.380%, 0.367%, 

0.285%, 0.274%, 0.144%, 0.095%, 0.308%, 0.166%, and 

0.107%. Among these, the combination of 3 temperature points 

and 4 pressure points showed the lowest linearity error 

(0.095%). These findings suggest that while both pressure and 

temperature points influence calibration accuracy, pressure 

points have a greater impact on improving linearity. 

Next, in the automatic target setting section, the results are 

presented for measurements taken under the same conditions—

4 temperature points and 4 pressure points—while changing 

the samples. The automatic target values were set using a 

polynomial regression-based model, and the linearity 

consistency among samples was compared. Figure 7 and 8 

shows the changes in automatic target values for each sample. 

These results demonstrate that the proposed polynomial 

regression-based automatic target setting method yields similar 

linearity results even when samples are replaced. 

 

 
Figure 5: Linearity error of 2 temperature points and 2 

pressure points 

 

 
Figure 6: Linearity error of 4 temperature points and 4 

pressure points 

 

 
Figure 7: Auto Target Result of Sensor 1 
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Figure 8: Auto Target Result of Sensor 2 

 

4.2. Discussion 

 
The experimental results from this study confirm that 

increasing the number of pressure and temperature points 

affects the calibration accuracy of pressure sensors. In 

particular, it was found that the number of pressure points has 

a greater impact on improving linearity than the number of 

temperature points. This is because the sensor's response to 

pressure changes is more sensitive, demonstrating that precise 

adjustment of pressure points is essential for enhancing 

calibration accuracy. 

In the automatic target-setting method, the polynomial 

regression-based model was shown to provide consistent target 

values even when samples were replaced, ensuring the 

reliability of the calibration process. Compared to the 

conventional manual target-setting method, the automated 

approach was found to be superior in terms of both efficiency 

and accuracy 

Additionally, since the temperature range used in this study 

was limited, it is possible that the influence of temperature 

points appeared to be relatively less significant. If the 

temperature range were expanded beyond the current test 

conditions, temperature points could also have a greater impact 

on the calibration process. This suggests that in real-world 

environments, where sensors are exposed to a wider range of 

temperatures, responding to temperature changes could be 

crucial. 

 

 

5. Conclusions  

 

We confirmed the impact of increasing the number of 

pressure and temperature points on the calibration accuracy of 

pressure sensors. The results showed that the number of 

pressure points has a greater effect on improving linearity than 

the number of temperature points, which is likely due to the 

higher sensitivity of the sensor to pressure changes. Therefore, 

this demonstrates the importance of increasing the number of 

pressure points to enhance the accuracy of pressure sensors. 

Additionally, we confirmed that the automatic target-setting 

method using a polynomial regression-based model can 

provide consistent target values even when samples are 

replaced. This method improves efficiency and accuracy 

compared to the manual target-setting approach, proving to be 

an effective way to increase the reliability of the pressure sensor 

calibration process. 

This study indicates that combining multiple calibration 

points with an automated target-setting method enhances both 

the accuracy and efficiency of pressure sensor calibration, 

making it a promising approach for broader applications in 

industrial settings where precise measurements are critical. 
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Appendixes 

 
Appendix 1: 2 temperature points and 3 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 
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70 

0 0.007 0.0974 3050 

22640 21.11 10.0 10.0902 6856 

95.36 45.0 45.0893 20302 

 

 
Appendix 2: 2 temperature points and 4 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

70 

0 0.007 0.0974 3050 

22640 
21.11 10.0 10.0902 6856 

74.04 35.0 35.0896 16444 

95.36 45.0 45.0893 20302 

 
Appendix 3: 3 temperature points and 2 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

40 
0 0.007 0.0974 3114 

18714 
95.36 10.0 45.0893 21562 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 
Appendix 4: 3 temperature points and 3 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

10 

0 0.007 0.0974 3184 

14184 21.11 10.0 10.0902 7542 

95.36 45.0 45.0893 22988 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 
Appendix 5: 3 temperature points and 4 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

10 

0 0.007 0.0974 3254 

14184 
21.11 10.0 10.0902 7542 

74.16 35.0 35.0896 18544 

95.36 45.0 45.0893 22988 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 
Appendix 6: 4 temperature points and 2 pressure points 

Chamber 
temp. 

Press. 
% 

SV[Bar] PV[bar] 
Press. 
ADC 

Temp. 
ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

10 
0 0.007 0.0974 3184 

14184 
95.36 45.0 45.0893 22988 

40 
0 0.007 0.0974 3114 

18714 
95.36 45.0 45.0893 21562 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 
Appendix 7: 4 temperature points and 3 pressure points 

Chamber Press. SV[Bar] PV[bar] Press. Temp. 

temp. % ADC ADC 

-20 
0 0.007 0.0974 3254 

9227 
95.36 45.0 45.0893 24626 

10 

0 0.007 0.0974 3184 

14184 21.11 10.0 10.0902 7542 

95.36 45.0 45.0893 22988 

40 
0 0.007 0.0974 3114 

18714 
95.36 45.0 45.0893 21562 

70 
0 0.007 0.0974 3050 

22640 
95.36 45.0 45.0893 20302 

 
Appendix 8: Linearity error of 2 temperature points and 3 
pressure points 

 
 
Appendix 9: Linearity error of 2 temperature points and 4 
pressure points 

 
 
Appendix 10: Linearity error of 3 temperature points and 2 
pressure points 

 
 

Appendix 11: Linearity error of 3 temperature points and 3 
pressure points 
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Appendix 12: Linearity error of 3 temperature points and 4 
pressure points 

 
 
Appendix 13: Linearity error of 4 temperature points and 2 
pressure points 

 
 
Appendix 14: Linearity error of 4 temperature points and 3 
pressure points 

 
 

 

 
 

 

 
 

 

 
 

 

 
 


