DOI QR코드

DOI QR Code

Utilization of Google Street View to Estimate Green View Index: a case study from Bandung, Indonesia

  • Emir LUTHFI (BPS Statistics Indonesia) ;
  • Setia PRAMANA (Dept. of Computational Statistics, Politeknik Statistika STIS)
  • Received : 2024.09.20
  • Accepted : 2024.12.05
  • Published : 2024.12.30

Abstract

The use of street view has many benefits with its popular source being Google Street View (GSV). One of the processing methods uses semantic segmentation which can classify each pixel according to the category of the pre-trained pyramid scene parsing network (PSPNet) model used. The Green View Index (GVI) is one of the semantic segmentation research trends in viewing Green Open Space (GOS) based on human perception of an area. Green Open Space (GOS) provides many benefits and more attractiveness to the community to be able to live in the vicinity. The GVI obtained gives an average value of 22.5% capturing the presence of GOS which is higher than the green open space data collected by Housing and Settlement Area, Land and Parking Offices Bandung City.

Keywords

Acknowledgement

This work was supported by the Politeknik Statistika STIS research funds.

References

  1. Almanza, E., Jerrett, M., Dunton, G., Seto, E., & Ann Pentz, M. (2012). A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health and Place, 18(1), 46-54. https://doi.org/10.1016/j.healthplace.2011.09.003
  2. Barbosa, O., Tratalos, J. A., Armsworth, P. R., Davies, R. G., Fuller, R. A., Johnson, P., & Gaston, K. J. (2007). Who benefits from access to green space? A case study from Sheffield, UK. Landscape and Urban Planning, 83(2-3), 187-195. https://doi.org/10.1016/j.landurbplan.2007.04.004
  3. Biljecki, F., & Ito, K. (2021). Street view imagery in urban analytics and GIS: A review. Landscape and Urban Planning, 215(July). https://doi.org/10.1016/j.landurbplan.2021.104217
  4. Dasgupta, A. (2013). Big data: The future is in analytics. https://www.geospatialworld.net/article/big-data-the-future-is-in-analytics/
  5. De Vries, S., van Dillen, S. M. E., Groenewegen, P. P., & Spreeuwenberg, P. (2013). Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Social Science and Medicine, 94, 26-33. https://doi.org/10.1016/j.socscimed.2013.06.030
  6. Dong, R., Zhang, Y., & Zhao, J. (2018). How green are the streets within the sixth ring road of Beijing? An analysis based on tencent street view pictures and the green view index. International Journal of Environmental Research and Public Health, 15(7). https://doi.org/10.3390/ijerph15071367
  7. DPKP Kota Bandung. (2023). Dinas Perumahan dan Kawasan Permukiman Kota Bandung. https://dpkp.bandung.go.id/
  8. He, N., & Li, G. (2021). Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environmental Challenges, 4(January). https://doi.org/10.1016/j.envc.2021.100090
  9. Isma, S., Hidayat, T., Biyatmoko, D., & Suyanto, S. (2019). Peran Dan Fungsi Ruang Terbuka Hijau Rantau Baru Di Kota Rantau Kabupaten Tapin. EnviroScienteae, 15(2), 317. https://doi.org/10.20527/es.v15i2.6978
  10. Jensen, R., Gatrell, J., Boulton, J., & Harper, B. (2004). Using Remote Sensing and Geographic Information Systems to Study Urban Quality of Life and Urban Forest Amenities. Ecology and Society, 9(5). https://doi.org/10.5751/es-01201-090505
  11. Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586-596. https://doi.org/10.1016/j.ecolind.2016.02.029
  12. Ki, D., & Lee, S. (2021). Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landscape and Urban Planning, 205(June 2020), 103920. https://doi.org/10.1016/j.landurbplan.2020.103920
  13. Li, X., Zhang, C., Li, W., Kuzovkina, Y. A., & Weiner, D. (2015). Who lives in greener neighborhoods? The distribution of street greenery and its association with residents' socioeconomic conditions in Hartford, Connecticut, USA. Urban Forestry and Urban Greening, 14(4), 751-759. https://doi.org/10.1016/j.ufug.2015.07.006
  14. Li, X., Zhang, C., Li, W., Ricard, R., Meng, Q., & Zhang, W. (2015). Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry and Urban Greening, 14(3), 675-685. https://doi.org/10.1016/j.ufug.2015.06.006
  15. Meng, Y., Xing, H., Yuan, Y., Wong, M. S., & Fan, K. (2020). Sensing urban poverty: From the perspective of human perception-based greenery and open-space landscapes. Computers, Environment and Urban Systems, 84(April), 101544. https://doi.org/10.1016/j.compenvurbsys.2020.101544
  16. Schule, S. A., Gabriel, K. M. A., & Bolte, G. (2017). Relationship between neighbourhood socioeconomic position and neighbourhood public green space availability: An environmental inequality analysis in a large German city applying generalized linear models. International Journal of Hygiene and Environmental Health, 220(4), 711-718. https://doi.org/10.1016/j.ijheh.2017.02.006
  17. Seiferling, I., Naik, N., Ratti, C., & Proulx, R. (2017). Green streets - Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning, 165(May), 93-101. https://doi.org/10.1016/j.landurbplan.2017.05.010
  18. van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for nature in urbanized societies: Stress, restoration, and the pursuit of sustainability. Journal of Social Issues, 63(1), 79-96. https://doi.org/10.1111/j.1540-4560.2007.00497.x
  19. Wu, D., Gong, J., Liang, J., Sun, J., & Zhang, G. (2020). Analyzing the influence of urban street greening and street buildings on summertime air pollution based on street view image data. ISPRS International Journal of Geo-Information, 9(9), 1-16. https://doi.org/10.3390/ijgi9090500
  20. Yang, J., Zhao, L., Mcbride, J., & Gong, P. (2009). Can you see green? Assessing the visibility of urban forests in cities. Landscape and Urban Planning, 91(2), 97-104. https://doi.org/10.1016/j.landurbplan.2008.12.004
  21. Zhang, Y., Li, S., Fu, X., & Dong, R. (2021). Quantification of urban greenery using hemisphere-view panoramas with a green cover index. Ecosystem Health and Sustainability, 7(1). https://doi.org/10.1080/20964129.2021.1929502
  22. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 6230-6239. https://doi.org/10.1109/CVPR.2017.660
  23. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., & Torralba, A. (2017). Scene parsing through ADE20K dataset. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 5122-5130. https://doi.org/10.1109/CVPR.2017.544
  24. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., & Torralba, A. (2019). Semantic Understanding of Scenes Through the ADE20K Dataset. International Journal of Computer Vision, 127(3), 302-321. https://doi.org/10.1007/s11263-018-1140-0