과제정보
이 연구는 2024년 을지대학교 대학혁신지원사업 지원을 받아 진행한 연구임.
참고문헌
- Y. Jang, J. Yoo, H. Hong, "Assessment and Analysis of Fidelity and Diversity for GAN-based Medical Image Generative Model", Journal of the Korea Computer Graphics Society, Vol. 28, No. 2, pp. 11-19, 2022. http://dx.doi.org/10.15701/kcgs.2022.28.2.11
- Y. J. Cho, K. M. Bae, J. Y. Park, "Research Trends of Generative Adversarial Networks and Image Generation and Translation", Electronics and Telecommunications Trends, Vol. 35, No. 4, pp. 91-102, 2020. https://dx.doi.org/10.22648/ETRI.2020.J.350409
- J. Y. Ko, B. H. Cho, M. J. Chung, "GAN-based research for high-resolution medical image generation", Proceedings of the Korea information Processing Society Conference, Vol. 27, No. 1, pp. 544-546,2020. https://dx.doi.org/10.3745/PKIPS.y2020m05a.544
- J. Y. Zhu, T. Park, P. Isola, A. A. Efros, "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks", 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242-2251, October 2017. https://doi.org/10.1109/ICCV.2017.244
- J. W. Lee, S. Y. Lee, D. H. Yoo, "Trends in Computed Tomography (CT) Technology", Electronics and Telecommunications Trends, Vol. 25, No. 4, pp. 60-68, 2010. https://doi.org/10.22648/ETRI.2010.J.250407
- H. R. Jang, H. O. Song, J. S. Kim, "Evaluation of Noise Characteristics and Influence of MRI Operation", Journal of the Korean Society of Living Environmental System, Vol. 25, No. 2, pp. 183-193, 2018. https://doi.org/10.21086/ksles.2018.04.25.2.183
- Korea Disease Control and Prevention Agency KDCA, "2023 National Medical Radiation Evaluation Yearbook", Publication Registration Number: 11-1790387-001056-01, 2023.
- National Health Insurance Service NHIS, "Nomore worries about expensive medical bills. Starting in November, abdominal and chest MRI tests will be covered by health insurance", NHIS, Vol. 254, 2021
- J. Y. Zhu, T. Park, P. Isola, A. A. Efros, "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks", 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2242-2251, 2017. https://doi.org/10.1109/ICCV.2017.244
- J. M. Wolterink, A. M. Dinkla, M. H. F. Savenije, P. R. Seevinck, C. A. T. van den Berg, I. Isgum, "Deep MR to CT Synthesis Using Unpaired Data", Lecture Notes in Computer Science, Vol. 10557, Simulation and Synthesis in Medical Imaging, Vol. 10557, pp. 2-10, 2017. https://doi.org/10.1007/978-3-319-68127-6_2
- Y. Lei, J. Harms, T. Wang, Y. Liu, H. K. Shu, A. B. Jani, W. J. Curran, H. Mao, T. Liu, X. Yang, "MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks", Medical Physics, Vol. 46, No. 8, pp. 3565-3581, 2019. http://dx.doi.org/10.1002/mp.13617
- Y. Liu, A. Chen, H. Shi, S. Huang, W. Zheng, Z. Liu, Q. Zhang, X. Yang, "CT synthesis from MRI using multi-cycle GAN for head-and-neck radiation therapy", Computerized Medical Imaging and Graphics, Vol. 91, 2021. http://dx.doi.org/10.1016/j.compmedimag.2021.101953
- H. Yang, J. Sun, A. Carass, C. Zhao, J. H. Lee, Z. Xu, J. Prince, "Unpaired Brain MR-to-CT Synthesis Using a Structure-Constrained CycleGAN", Lecture Notes in Computer Science, Vol. 11045, pp. 174-182, 2018.
- S. Durr, Y. Mroueh, Y. Tu, S. Wang, "Effective Dynamics of Generative Adversarial Networks", Physical review. X, Vol. 13, No. 041004, 2023. http://dx.doi.org/10.1103/PhysRevX.13.041004
- SuperAnnotate, "Intersection over Union (IoU) for object detection", SuperAnnotate, July 20, 2023.
- M. Krithika alias Anbu Devi, K. Suganthi, "Review of Medical Image Synthesis using GAN Techniques", ITM Web Conference, Vol. 37, 2021. https://doi.org/10.1051/itmconf/20213701005
- W. Li, Y. Li, W. Qin, X. Liang, J. Xu, J. Xiong, Y. Xie, "Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy", Quantitative imaging in medicine and surgery, Vol. 10, No. 6, pp. 1223-1236, 2020. http://dx.doi.org/10.21037/qims-19-885
- Y. Skandarani, P. M. Jodoin, A. Lalande, "GANs for Medical Image Synthesis: An Empirical Study", Journal of Imaging, Vol. 9, No. 3, pp. 69, 2023. https://doi.org/10.3390/jimaging9030069
- C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Furukawa, G. Mauri, H. Nakayama, "GAN-based synthetic brain MR image generation", IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) pp. 734-738, 2018. https://doi.org/10.1109/ISBI.2018.8363678