DOI QR코드

DOI QR Code

Study of Calculating Shielding Wall Thickness in Cyclotron Room

사이클로트론실 차폐벽 두께 산정에 관한 연구

  • Min-Jeong Kim (Department of Radiological Science, Shingu College) ;
  • Ri-Woo Kang (Department of Radiological Science, Shingu College) ;
  • Hui-Jeong An (Department of Radiological Science, Shingu College) ;
  • Seo-Young Lee (Department of Radiological Science, Shingu College) ;
  • Hong-Gu Lee (Department of Radiological Science, Shingu College) ;
  • Joo-Young Lee (Department of Radiological Science, Shingu College) ;
  • Hoon-Hee Park (Department of Radiological Science, Shingu College)
  • 김민정 (신구대학교 방사선학과) ;
  • 강리우 (신구대학교 방사선학과) ;
  • 안희정 (신구대학교 방사선학과) ;
  • 이서영 (신구대학교 방사선학과) ;
  • 이홍구 (신구대학교 방사선학과) ;
  • 이주영 (신구대학교 방사선학과) ;
  • 박훈희 (신구대학교 방사선학과)
  • Received : 2024.10.19
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

With the increasing utilization of cyclotrons in medical, research, and industrial applications, effective shielding in cyclotron rooms has become crucial to ensure worker safety. This study focuses on optimizing the shielding wall thickness by using a water-based composite shielding wall in cyclotron rooms. The Moyer model was employed to calculate the external dose rates from neutron reactions at various energy levels (8.4, 13, 18, 30, and 50 MeV) on an Nb target. The neutron energy spectra required for the calculations were derived using the Talys program. The shielding efficiency of the water-based composite wall was compared with that of a conventional concrete wall. The results showed that the optimal thicknesses of the composite shielding wall were 1.38m at 8.4 MeV, 1.58m at 13 MeV, 15.8m at 18 MeV, 15.8m at 30 MeV, and 1.58m at 50 MeV. The composite wall demonstrated its potential for more efficient neutron shielding by reducing the required thickness across various energy levels. This study provides foundational data for neutron shielding design in cyclotron facilities and is expected to contribute to the optimization of practical shielding materials and thicknesses.

사이클로트론의 의료, 연구 및 산업적 활용이 증가함에 따라, 사이클로트론실의 효과적인 차폐가 작업자의 안전을 보장하기 위해 매우 중요해지고 있다. 본 연구는 사이클로트론실에서 물 기반 혼합 차폐벽을 사용하여 차폐벽 두께를 최적화하는 데 중점을 두었다. Moyer model을 활용하여 Nb 타겟에서 발생하는 중성자 반응에 따른 다양한 에너지 수준(8.4, 13, 18, 30, 50 MeV)에서의 외부 선량률을 계산하였고, 계산에 필요한 중성자 에너지 스펙트럼을 산출하기 위해 Talys 프로그램을 사용하였다. 물 기반 혼합 차폐벽의 차폐 효율을 기존 콘크리트 벽과 비교하였으며, 연구 결과 최적의 혼합 차폐벽 두께는 에너지대별로 8.4 MeV에서 1.38 m, 13 MeV에서는 1.58 m, 18 MeV에서는 1.58 m, 30 MeV에서는 1.58 m, 50 MeV에서는 1.58 m로 나타났다. 혼합 차폐벽이 다양한 에너지 수준에서 필요한 차폐 두께를 감소시켜 보다 효율적인 중성자 차폐 가능성을 보여주었다. 본 연구는 사이클로트론 시설의 중성자 차폐 설계에 기초 자료를 제공하며, 실용적인 차폐체 및 두께 최적화에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. B. C. Lee, H. I. Kim, "Shielding technology for high energy radiation production facility", Korea Atomic Energy Research Institute, KAERI/TR-2783/2004, 2004. 
  2. A. Paul, "An exploration of the production of negative ions from neutral gases using a negative hydrogen ion source driver", Carleton University, Master of Science, 2019.
  3. K. O. M. Elsayed, "The Effect of the High-Energy Proton Component of Cosmic Rays on the DNA Structure", Saint-Petersburg State University, the PhD degree of physico-mathematical sciences, 2020. 
  4. E. J. Hall, "Neutrons and carcinogenesis: a cautionary tale", Bulletin du Cancer/Radiotherapie, Vol. 83, No. 1, pp. 43-46, 1996. https://doi.org/10.1016/0924-4212(96)84883-3 
  5. Cyclotron, Samsunghospital, From URL; http://www.samsunghospital.com/dept/main/index.do?DP_CODE=NM&MENU_ID=008019 
  6. E. A. Amirabadi, M. Salimi, N. G. Eh, G. R. Etaati, H. Asadi, "Study of Neutron and Gamma Radiation Protective Shield", International Journal of Innovation and Applied Studies, Vol. 3, No. 4, pp. 1079-1080, 2013. 
  7. A. Koning, S. Hilaire, S. Goriely, "TALYS-2.0", TALYS, pp. 1-92, 2023. 
  8. Neutron activation and scattering calculator, NIST Center for Neutron Research, From URL; https://www.ncnr.nist.gov/resources/activation/ 
  9. G. I. Britvch, A. A. Chumakov, R. M. Ronningen, R. A. Blue, L. H. Heilbronn, "Measurements of Thick Target Neutron Yields and Shielding Studies Using Beams of He, 12C and 160 at 155 MeV/neutron from the K1200 Cyclotron at the National Superconducting Cyclotron Laboratory", Review of Scientific Instruments, Vol. 70, No. 5, pp. 9, 1998. http://dx.doi.org/10.1063/1.1149757 
  10. N. P. Henss, W. E. Bloch, K. F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl, "Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures", Annals of the ICRP, Vol. 40, No. 2-5, pp. 130, 2010. http://dx.doi.org/10.1016/j.icrp.2011.10.001 
  11. Korean Association for Radiation Application, "Radiation handling technology that ends in one volume", Korean Association for Radiation Application, pp. 262, 2020. 
  12. S. Vichi, F. Zagni, G. Cicoria, A. Infantino, S. Riga, M. Zeller, T. S. Carzaniga, K. P. Nesteruk, S. Braccini, M. Marengo, D. Mostacci, "Activation studies of a PET cyclotron bunker", Radiation Physics and Chemistry, Vol. 161, pp. 48-54, 2019. http://dx.doi.org/10.1016/j.radphyschem.2019.04.001 
  13. A. J. Kreiner, J. Bergueiro, D. Cartelli, M. Baldo, W. Castell, J. G. Asoia, et al., "Present status of Accelerator-Based BNCT", Reports of Practical Oncology & Radiotherapy, Vol. 21, No. 2, pp. 95-101, 2016. http://dx.doi.org/10.1016/j.rpor.2014.11.004 
  14. T. Piotrowski, "Neutron shielding evaluation of concretes and mortars: A review", Construction And Building Materials, Vol. 277, pp. 122238, 2021. http://dx.doi.org/10.1016/j.conbuildmat.2020.122238