DOI QR코드

DOI QR Code

Measurement using the Charcoal Canister of the Indoor Radon Concentration in Classroom and Laboratory

차콜 캐니스터를 이용한 교실 및 실험실의 라돈 농도 측정

  • Dae Cheol Kweon (Department of Radiological Science, College of Health, Shinhan University)
  • 권대철 (신한대학교 보건대학 방사선학과)
  • Received : 2024.10.03
  • Accepted : 2024.11.30
  • Published : 2024.11.30

Abstract

This study aims to measure the level of indoor radon concentration in classrooms where college students take lectures and participate in activities, and use it as basic data for indoor radon management measures in school classrooms. To measure radon concentration, the study was conducted in a classroom at a university located in Gyeonggi-do, depending on the university classroom operating environment. Radon was measured using the RadoMon Kit (Betterlife Co., Ltd., Suwon, Korea). To measure radon concentration, the effective dose model presented in the United Nations Scientific Committee on the Effects of Radiation Effects Report 2000 (UNSCEAR (2000) was used. The effective dose was evaluated by applying a total of 1,200 hours of annual living time indoors in the classroom. The radon concentration in the classroom and laboratory was measured, the annual effective dose was evaluated, and the effective dose was converted by entering the radon concentration and factors using the personal radon dosimetry program provided by WISE. The radon concentration using the charcoal canister was 80.29 Bq/m3 in the classroom, and 90.28 Bq/m3 in the laboratory, indicating a high radon concentration in the laboratory. The annual effective dose and cumulative dose of radon concentration were measured at 1.21 mSv in the classroom and 1.36 mSv in the laboratory, and the dose rate was 1.008 µSv/h in the classroom and 1.134 µSv/h in the laboratory. The indoor radon concentration was measured at a level lower than the indoor radon concentration management standard, but from the viewpoint of optimization of protection, efforts should be made to keep the radon concentration as low as reasonably achievable and reduce the degree of health hazard, and continuous management is necessary.

본 연구는 대학생들이 강의를 수강하고 활동하는 교실에서 실내 라돈 농도의 수준을 측정하여 라돈에 대한 학교 교실의 실내 라돈 관리방안을 위한 기초자료로 활용하고자 한다. 라돈 농도 측정을 위해 대학 교실 운영 환경에 따라서 경기도 소재 일개 대학의 교실을 대상으로 수행되었다. 라돈 측정은 RadoMon Kit (Betterlife Co., Ltd., Suwon, Korea)를 이용하여 측정하였다. 라돈 농도를 측정하기 위해 유엔방사선영향과학 위원회 리포트 2000 (UNSCEAR, 2000)에서 제시한 유효선량 모델을 사용하였다. 연간 교실의 실내에 거주한 시간을 총 1,200시간을 적용하여 유효선량을 평가하였다. 교실 및 실험실의 라돈 농도를 측정하고, 연간 유효선량을 평가 및 유효선량에 대한 변환은 WISE에서 제공하는 개인 라돈 선량측정 프로그램을 이용하여 라돈 농도와 인자를 입력하여 유효선량을 측정하였다. 차콜 캐니스터를 이용한 라돈 농도는 교실에서 80.29 Bq/m3 이었고, 실험실에서는 90.28 Bq/m3 로 실험실에서 라돈 농도가 높게 측정되었다. 라돈 농도의 년간유효선량 및 누적선량은 교실 1.21 mSv, 실험실은 1.36 mSv로 계산되었고, 선량율은 교실에서 1.008 µSv/h, 실험실에서 1.134 µSv/h이었다. 실내 라돈 농도는 실내 라돈 농도 관리 기준보다 낮은 준위로 측정되었으나 방호의 최적화 관점에서 라돈 농도를 합리적으로 달성 가능한 한 낮게 유지하고 보건의 위해 정도를 저감하기 위한 노력을 기울이고 지속적인 관리가 필요하다.

Keywords

References

  1. K. Jamil, K. K. Al-Ahmady, Fazal-ur-Rehman, S. Ali, A. A. Qureshi, H. A. Khan HA, "Relative performance of different types of passive dosimeters employing solid state nuclear track detectors", Health Physics, Vol. 73, No. 4, pp. 629-32, 1997. https://doi.org/10.1097/00004032-199710000-00006
  2. E. K. Chung, K. B. Kim, J. K. Jang, S. W. Song, "Review of guidelines for radon and estimation of radiation dose", Journal of Korean Society of Occupational and Environmental Hygiene, Vol. 26, No. 2, pp. 109-118, 2016. https://doi.org/10.15269/JKSOEH.2016.26.2.109
  3. D. H. Zoo, K. H. Jeong, H. W. Lim, H. J. Bok, D. S. Yun, D. W. Min, K. H. Mun, K. D. Kim, J. U. Lee, J. M. Choi, W. Y. Kim, S. Yoon, "A Study on indoor radon concentration among vulnerable households in Korea", Journal of Environmental Health Sciences, Vol. 41, No. 2, pp. 61-70, 2015. http://dx.doi.org/10.5668/JEHS.2015.41.2.61
  4. W. Yang, K. Lee, C. Yoon, S. Yu, K. Park, W. Choi, "Determinants of residential indoor and transportation activity times in Korea", Journal of Exposure Science and Environmental Epidemiology, Vol. 21, No. 3, pp. 310-316, 2011. https://doi.org/10.1038/jes.2010.23
  5. M. J. Kim, S. H. Kim, D. W. Cha, S. J. Lee, S. Y. Cho, "A comparative experiment of charcoal canister measurement sensitivity using super absorbent polymer", Journal of Odor and Indoor Environment, Vol. 18, No. 1, pp. 55-59, 2019. https://doi.org/10.15250/joie.2019.18.1.55
  6. M. J. Kim, W. J. Jang, S. Y. Cho, J. O. Shim, "Enhancing radon detection accuracy with charcoal canister: A simple method for measuring radon", Radiation Measurements, Vol. 174, pp. 107143, 2024. https://doi.org/10.1016/j.radmeas.2024.107143
  7. A. Vargas, X. Ortega, I. Serrano, Response of a radon charcoal canister to climatic and radon variations in the INTE radon chamber, in Proceedings of the 11th International Congress of the International Radiation Protection Association, IRPA, Barcelona, 2014
  8. J. Vaupotic, M. Sikovec, I. Kobal, "Systematic indoor radon and gamma-ray measurements in Slovenian schools", Health Physics, Vol. 78, No. 5, pp. 559-562, 2000.http://dx.doi.org/10.1097/00004032-200005000-00014
  9. K. S. Lee, S. Y. Seo, Y. J. Kim, K. H. Choi, B. S. Son, "A Study on the indoor radon concentration of elementary school in Korea", Journal of Korean Society for Indoor Environment, Vol. 9, No. 2, pp. 127-133, 2012. https://db.koreascholar.com/Article/Detail/31780
  10. J. R. Sohn, Y. M. Roh, B. S. Son, "The assessment of survey on the indoor air quality at schools in Korea", Journal of Environmental Health Sciences, Vol. 32, No. 2, pp. 140-146, 2006.
  11. C. M. Lee, Y. S. Kim, J. S. Moon, S. U. Kim, "A study on the indoor air pollution in the classrooms of primary, middle and high schools in Seoul and Gyeonggi-Do", Journal of the Korean Society of School Health, Vol. 16, No. 1, ppl. 81-90, 2003.
  12. H. H. Park, E. J, H. J. Kim, J. Lee, K. Y. Lyu, "Assessment of indoor radon gas concentration change of college", Journal of Radiological Science and Technology, Vol. 40, No. 1, pp. 127-134, 2017. http://dx.doi.org/10.17946/JRST.2017.40.1.18
  13. J. S. Lee, D. C. Kweon, "Prediction for the lifetime effective dose and radon exposure risk by using dose conversion convention: base on the indoor radon concentration of lecture room in a university, Journal of Biomedical Engineering Research, Vol. 39, No. 6, pp. 243-249, 2018. http://dx.doi.org/10.9718/JBER.2018.39.6.243
  14. United Nations Scientific Committee on the Effects of Atomic Radiation, ANNEX B, Exposures from natural radiation sources, 2000.
  15. ICRP, Lung Cancer Risk from Radon and Progeny and Statement on Radon, ICRP Publication 115: Ann. ICRP, Vol. 40, No. 1, 2010.
  16. J. S. Lee, S. H. Yang, D. C. Kweon, "Assessment of indoor radon concentration and annual effective dose in a university lecture room", Journal of Radiation Industry, Vol. 12, No. 3, pp. 223-231, 2018. http://dx.doi.org/10.23042/radin.2018.12.3.223
  17. Amin Shahrokhi, Tibor Kovacs, "Characterization of environmental radiological parameters on dose coefficient-realistic dosimetry compared with epidemiological dosimetry models", Heliyon, Vol. 9, No. 9, pp. 19813, 2023. http://dx.doi.org/10.1016/j.heliyon.2023.e19813
  18. S. Lee, Y. Lee, J. Park, S. Kim G. Hong, H. Ahn, W. Y, "Radon concentration assessment of studio apartments surrounding a university", Journal of Environmental Health Sciences, Vol. 39, No. 2, pp. 138-143, 2013. https://doi.org/10.5668/JEHS.2013.39.2.138
  19. S. Park, J. Y. Kim, D. C. Shin, "Health risk for indoor radon in schools", The Environmental Education, Vol. 12, No. 2, pp. 81-90, 1999.
  20. J. S. Kim, "Indoor radon levels and effective dose estimation in learning and common living space of university", Journal of the Korean Society of Radiology, Vol. 12, No. 3, pp. 329-333, 2018. https://doi.org/10.7742/jksr.2018.12.3.329