참고문헌
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de O. Pinto, J. Kaplan, et. al, "Evaluating Large Language Models Trained on Code," https://arxiv.org/pdf/2107.03374. pp. 1-35. Jul 2021. DOI: https://doi.org/10.48550/arXiv.2107.03374
- Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, et. al, "CodeBERT: A Pre-Trained Model for Programming and Natural Languages," https://arxiv.org/abs/2002.08155, pp. 1-12, Sep 2020. DOI: https://doi.org/10.48550/arXiv.2002.08155
- U. Alon, M. Zilberstein, O. Levy, E. Yahav, "code2vec: Learning Distributed Representations of Code," https://arxiv.org/pdf/1803.09473. in Proc. ACM on Programming Languages, Vol. 3, Issue POPL, No. 40, pp. 1-29, Jan 2019. DOI: https://doi.org/10.1145/3290353
- D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, et. al, "GraphCodeBERT: Pre-training code Representations with Data Flow," in Proc. ICLR2021 9th, https://arxiv.org/abs/2009.08366, pp. 1-18, Sep 2021. DOI: https://doi.org/10.48550/arXiv.2009.08366
- U. Alon, S. Brody, O. Levy, E. Yahav, "code2seq: Generating Sequences from Structure Representations of Code," https://arxiv.org/abs/1808.01400, in Proc. ICLR2019, pp. 1-22. DOI: https://doi.org/10.48550/arXiv.1808.01400
- B. Guo, X. Shan, J. Chung, "A Comparative Study on the Features and Applications of AI Tools - Focus on PIKA Labs and RUNWAY," The Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol. 16, No. 1, pp. 86-91, Feb 2024. DOI: https://doi.org/10.7236/IJI BC.2024.16.1.86
- TabNine, https://www.tabnine.com/.
- TabNine, https://github.com/codota/TabNine
- Codota, https://www.tabnine.com/.
- Codota, https://github.com/codota
- MS IntelliCode, https://visualstudio.microsoft.com/ko/services/intellicode/
- OpenAI Codex, https://openai.com/
- Salesforce Research CodeT5, https://github.com/salesforce/CodeT5
- MS Research, https://github.com/microsoft/CodeBERT
- Technion Israel Institute of Technology, https://github.com/tech-srl/code2vec
- MS Research, https://github.com/microsoft/graphcodebert
- Snyk, https://snyk.io/platform/deepcode-ai/
- MS Research, https://github.com/microsoft/prose
- MS, https://www.scribd.com/document/632501043/Flash-fill-1
- Sourcegraph, https://sourcegraph.com/
- Sourcegraph, https://github.com/sourcegraph/sourcegraph
- DreamCode, https://github.com/DreamPoland
- DreamCode, https://www.dreamcode.io/
- Keras, https://keras.io/
- Keras, https://github.com/keras-team/keras
- Deeplearning4J, https://github.com/deeplearning4j
- Deeplearning4J, https://github.com/deeplearning4j/deeplearning4j