References
- D. Sathya, V. Sudha, and D. Jagadeesan, "Application of machine learning techniques in healthcare", Handbook of Research on Applications and Implementations of Machine Learning Techniques, IGI Global, pp.289-304, 2020. DOI : https://doi.org/10.4018/978-1-7998-1192-3.ch014
- A. Nayyar, L. Gadhavi, and N. Zaman, "Machine learning in healthcare: review, opportunities and challenges", Machine Learning and the Internet of Medical Things in Healthcare, pp.23-45, 2021. DOI : https://doi.org/10.1016/B978-0-12-821229-5.00011-2
- R. Pillai, P. Oza, and P. Sharma, "Review of machine learning techniquesin health care", in Proc.ICRIC 2019: Recent Innovations in Computing, Springer International Publishing, 2020. DOI : https://doi.org/10.1007/978-3-030-29407-6_3
- I. Hoseni, S. Khalil, A. Salleh, M. Tenrirati, "Comparison of Machine Learning Algorithms for Heart Failure Prediction", Journal of Machine Learning Research, Vol. 21, pp. 1234-1248, 2020.
- B. Daminov, R. Khodzhimatova, O. Makhmudova, "LSTM Neural Network for Heart Failure Risk Prediction", in Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1256-1263, 2021.
- J. Kwon, J. Lee, H. Shin, S. Park, "Support Vector Machine-Based Heart Failure Prediction Model Using Patient Data", Journal of Cardiovascular Diseases, Vol. 6, No. 3, pp. 112-119, 2018.
- N. Azri, M. Rizal, N. Sarif, F. Ahmad, "Ensemble Techniques for Heart Failure Prediction", International Journal of Advanced Computer Science and Applications, Vol. 12, No. 5, pp. 456-462, 2021. DOI : https://doi.org/10.14569/IJACSA.2021.0120555
- T. Ahmad, A. Munir, S.H. Bhatti, M. Aftab, M.A. Raza, "Survival Analysis of Heart Failure Patients: A Case Study", PLoS ONE, Vol. 12, No. 7, e0181001, 2017. DOI : https://doi.org/10.1371/journal.pone.0181001
- I. Hoseni, S. Khalil, A. Salleh, M. Tenrirati, "Accuracy Evaluation of Machine Learning Algorithms for Heart Failure Prediction", in Proc. of the International Conference on Artificial Intelligence and Data Science, pp. 231-240, 2020.
- J. Kwon, J. Lee, H. Shin, S. Park, "Accuracy Assessment of Support Vector Machine for Heart Failure Prediction", Journal of Cardiovascular Diseases, Vol. 6, No. 3, pp. 112-119, 2018.
- N. Azri, M. Rizal, N. Sarif, F. Ahmad, "AUC-Based Evaluation of Ensemble Techniques for Heart Failure Prediction", International Journal of Advanced Computer Science and Applications, Vol. 12, No. 5, pp. 456-462, 2021. DOI : https://doi.org/10.14569/IJACSA.2021.0120555
- T. Ahmad, A. Munir, S.H. Bhatti, M. Aftab, M.A. Raza, "Accuracy Analysis of Machine Learning Algorithms for Heart Failure Survival Prediction", PLoS ONE,Vol. 12, No. 7, e0181001, 2017. DOI : https://doi.org/10.1371/journal.pone.0181001
- B. Daminov, R. Khodzhimatova, O. Makhmudova, "Comprehensive Evaluation of LSTM Neural Network for Heart Failure Risk Prediction", in Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 1256-1263, 2021.
- Kaggle, "Heart Failure Clinical Data", https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data.
- S. Sinsomboonthong, "Performance comparison of new adjusted min-max with decimal scaling and statistical column normalization methods for artificial neural network classification", International Journal of Mathematics and Mathematical Sciences, 2022. DOI : https://doi.org/10.1155/2022/9783798
- M. Z. AL-FAIZ, A. A. IBRAHIM, and S. M. HADI, "The effect of Z-Score standardization (normalization) on binary input due the speed of learning in back-propagation neural network", Iraqi Journal of Information and Communication Technology, Vol.1, No.3, pp.42-48, 2018.
- M. P. LaValley, "Logistic regression", Circulation, Vol.117, No.18, pp.2395-2399, 2008. DOI : https://doi.org/10.1161/CIRCULATIONAHA.106.682658
- S. J. Rigatti, "Random forest", Journal of Insurance Medicine, Vol.47, No.1, pp.31-39, 2017. DOI : https://doi.org/10.17849/insm-47-01-31-39.1
- V. Jakkula, "Tutorial on support vector machine (svm)", School of EECS, Washington State University, 37(2.5), 3, 2006.
- T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system", in Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.785-794, 2016. DOI : https://doi.org/10.1145/2939672.2939785
- S. Kumari, D. Kumar, and M. Mittal, "An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier", International Journal of Cognitive Computing in Engineering, Vol.2, pp.40-46, 2021.
- B. H. Shekar and G. Dagnew, "Grid search-based hyperparameter tuning and classification of microarray cancer data", 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), IEEE, 2019.
- B. Juba and H. S. Le, "Precision-recall versus accuracy and the role of large data sets", Proc. of the AAAI Conference on Artificial Intelligence,Vol.33, No.01, pp.4039-4048, 2019.
- E. J. Michaud, Z. Liu, and M. Tegmark, "Precision Machine Learning", Entropy, Vol.25, No.1, 175, 2023.
- D. Chicco and G. Jurman, "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation", BMC Genomics, Vol.21, 1-13, 2020.
- A. Kumar Dewangan and P. Agrawal, "Classification of diabetes mellitus using machine learning techniques", International Journal of Engineering and Applied Sciences, Vol.2, No.5, pp.257-905, 2015.