DOI QR코드

DOI QR Code

Effect of shield tunnel underpass construction on the upper existing pipeline

  • Zhen-Dong Cui (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Zhang-Lin Zhu (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Xuan-Yu Mi (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Li Yuan (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Zhong-Liang Zhang (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Chen-Yang Zhao (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2024.01.18
  • Accepted : 2024.11.11
  • Published : 2024.11.25

Abstract

The construction of the shield tunnel results in the deformation of the surrounding soil and the existing pipeline. It is important to analyze the deformation of the existing pipeline during the excavation of the tunnel. Based on the two-stage analysis method, the shear effect of pipeline due to the uneven settlement was considered and the deformation and internal force of existing pipeline due to the tunnel excavation were studied. The theoretical formulas were verified by the in-site monitoring. Compared with the theoretical calculation, the three-dimensional numerical simulation was established to simulate the deformation of the existing pipeline and the ground surface during the tunnelling. The effect of the Poisson's ratio, the tunnel diameter and the pipeline shading on the deformation of the existing pipeline were further investigated. The results show that the deformation curves of the pipeline and the ground surface conform to the Gaussian distribution, and the position above the axis of the tunnel experiences the maximum. When the excavation surface of tunnel crosses underneath the pipeline, the pipeline and the ground surface experience larger deformation and more subsidence, respectively. A certain amount of uplift is generated for the pipeline and the ground surface at ± 20 m away from the center line of the tunnel. The deformation of existing pipelines is affected by the tunnel excavation within its diameter range. The results can provide a reference for the design and construction of the shield tunnel underpass.

Keywords

Acknowledgement

The work presented in this paper was funded by the National Natural Science Foundation of China (Grant No. 52378381).

References

  1. Attewell, P.B., Yeates, J. and Selby, A.R. (1986), Soil movement induced by tunneling and their effects on pipelines and structures, Blackie and Son Ltd, London, U.K.
  2. Chen, L.A., Pei, W.W., Yang, Y.H. and Guo, W.L. (2022), "Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions", Geomech. Eng., 31(3), 237-248. https://doi.org/10.12989/gae.2022.31.3.237.
  3. Chen, W.C., Tang, L.X., Zhao, H.J., Yin, Q., Dong, S., Liu, J., Zhu, Z.H. and Ni, X.D. (2023), "Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay", Geomecha. Eng., 34(2), 115-124. https://doi.org/10.12989/gae.2023.34.2.115.
  4. Ding, Z., Zhang, M.B., Zhang, X. and Wei, X.J. (2023), "Theoretical analysis on the deformation of existing tunnel caused by under-crossing of large-diameter slurry shield considering construction factors", Tunn. Undergr. Sp. Tech., 133. https://doi.org/10.1016/j.tust.2022.104913.
  5. Huang, M.S., Zhou, X.C., Yu, J., Leung, C.F. and Tan, J.Q.W. (2019), "Estimating the effects of tunnelling on existing jointed pipelines based on Winkler model", Tunn. Undergr. Sp. Tech., 86, 89-99. https://doi.org/10.1016/j.tust.2019.01.015.
  6. Huang, X., Schweiger, H.F. and Huang, H.W. (2013), "Influence of deep excavations on nearby existing tunnels", Int. J Geomech., 13(2), 170-180. https://doi.org/10.1061/(asce)gm.1943-5622.0000188.
  7. Klar, A., Marshall, A.M., Soga, K. and Mair, R.J. (2008), "Tunneling effects on jointed pipelines", Can. Geotech. J., 45(1), 131-139. https://doi.org/10.1139/t07-068.
  8. Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2005), "Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions", Geotechnique, 55(6), 461-466. https://doi.org/10.1680/geot.2005.55.6.461.
  9. Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2007), "Elastoplastic solution for soil-pipe-tunnel interaction", J. Geotech. Geoenviron. Eng., 133(7), 782-792. https://doi.org/10.1061/(asce)1090-0241(2007)133:7(782).
  10. Lee, K.M., Rowe, R.K. and Lo, K.Y. (1992), "Subsidence owing to tunnelling. I. Estimating the gap parameter", Can. Geotech. J., 29(6), 929-940. https://doi.org/10.1016/0148-9062(93)92661-9.
  11. Liang, R.Z., Wu, W.B., Yu, F., Jiang, G.S. and Liu, J.W. (2018), "Simplified method for evaluating shield tunnel deformation due to adjacent excavation", Tunn. Undergr. Sp. Tech., 71, 94-105. https://doi.org/10.1016/j.tust.2017.08.010.
  12. Liang, R.Z., Xia, T.D., Hong, Y. and Yu, F. (2016), "Effects of above-crossing tunnelling on the existing shield tunnels", Tunn. Undergr. Sp. Tech., 58, 159-176. https://doi.org/10.1016/j.tust.2016.05.002.
  13. Liang, R.Z., Xia, T.D., Huang, M.S. and Lin, C.G. (2017), "Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect", Comput. Geotech., 81, 167-187. https://doi.org/10.1016/j.compgeo.2016.08.017.
  14. Lin, C.G., Huang, M.S., Nadim, F. and Liu, Z.Q. (2020), "Tunnelling-induced response of buried pipelines and their effects on ground settlements", Tunn. Undergr. Sp. Tech., 96, 17. https://doi.org/10.1016/j.tust.2019.103193.
  15. Lin, C.G., Huang, M.S., Nadim, F., Liu, Z.Q. and Yu, J. (2021), "Analytical solutions for tunnelling-induced response of two overlying pipelines", Tunn. Undergr. Sp. Tech., 108, 14. https://doi.org/10.1016/j.tust.2020.103678.
  16. Lin, X.T., Chen, R.P., Wu, H.N. and Cheng, H.Z. (2019), "Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle", Tunn. Undergr. Sp. Tech., 89, 78-90. https://doi.org/10.1016/j.tust.2019.03.021.
  17. Liu, J.W., Shi, C.H., Lei, M.F., Cao, C.Y. and Lin, Y.X. (2020), "Improved analytical method for evaluating the responses of a shield tunnel to adjacent excavations and its application", Tunn. Undergr. Sp. Tech., 98, 12. https://doi.org/10.1016/j.tust.2020.103339.
  18. Liu, X., Jiang, A.N., Fang, Q., Wan, Y.S., Li, J.Y. and Guo, X.P. (2022), "Spatiotemporal deformation of existing pipeline due to new shield tunnelling parallel beneath considering construction process", Appl. Sci.-Basel, 12(1), 20. https://doi.org/10.3390/app12010500.
  19. Loganathan, N. and Poulos, H.G. (1998), "Analytical prediction for tunneling-induced ground movements in clays", J. Geotech. Geoenviron. Eng., 124(9), 846-856. https://doi.org/doi:10.1061/(ASCE)10900241(1998)124:9(846).
  20. Luo, X.P., Lu, S.L., Shi, J.F., Li, X. and Zheng, J.Y. (2015), "Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement", Eng. Fail. Anal., 48, 144-152. https://doi.org/10.1016/j.engfailanal.2014.11.014.
  21. Marshall, A.M., Klar, A. and Mair, R.J. (2010), "Tunneling beneath buried pipes: View of soil strain and its effect on pipeline behavior", J. Geotech. Geoenviron. Eng., 136(12), 1664-1672. https://doi.org/10.1061/(asce)gt.1943-5606.0000390.
  22. Nawel, B. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
  23. Shi, J.W., Wang, J.P., Ji, X.J., Liu, H.Q. and Lu, H. (2022), "Three-dimensional numerical parametric study of tunneling effects on existing pipelines", Geomech. Eng., 30(4), 383-392. https://doi.org/10.12989/gae.2022.30.4.383.
  24. Shi, J.W., Wang, Y. and Ng, C.W.W. (2013), "Buried pipeline responses to ground displacements induced by adjacent static pipe bursting", Can. Geotech. J., 50(5), 481-492. https://doi.org/10.1139/cgj-2012-0304.
  25. Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh, and Dublin Philosophical Magazine and J. Science, 41(245), 744-746. https://doi.org/10.1080/14786442108636264.
  26. Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", The London, Edinburgh, and Dublin Philosophical Magazine and J. Science, 43(253), 125-131. https://doi.org/10.1080/14786442208633855.
  27. Vorster, T.E.B., Klar, A., Soga, K. and Mair, R.J. (2005), "Estimating the effects of tunneling on existing pipelines", J. Geotech. Geoenviron. Eng., 131(11), 1399-1410. https://doi.org/10.1061/(asce)1090-0241(2005)131:11(1399).
  28. Wang, J.X., Cao, A.S., Wu, Z., Sun, Z.P., Lin, X., Sun, L., Liu, X.T., Li, H.B.Q. and Sun, Y.W. (2022), "Numerical simulation on the response of adjacent underground pipelines to super shallow buried large span double-arch tunnel excavation", Appl. Sci.-Basel, 12(2), 24. https://doi.org/10.3390/app12020621.
  29. Wang, Y., Shi, J.W. and Ng, C.W.W. (2011), "Numerical modeling of tunneling effect on buried pipelines", Can. Geotech. J., 48(7), 1125-1137. https://doi.org/10.1139/t11-024.
  30. Wu, H.N., Shen, S.L., Yang, J. and Zhou, A.N. (2018), "Soil-tunnel interaction modelling for shield tunnels considering shearing dislocation in longitudinal joints", Tunn. Undergr. Sp. Tech., 78, 168-177. https://doi.org/10.1016/j.tust.2018.04.009.
  31. Wu, W.Y. (2008), Study on mechanical behaviors of buried pipelines induced by shield tunneling construction, Hangzhou, Zhejiang University, China [in Chinese].
  32. Yoo, C. and Cui, S.S. (2020), "Effect of new tunnel construction on structural performance of existing tunnel lining", Geomech. Eng., 22(6), 497-507. https://doi.org/10.12989/gae.2020.22.6.497.
  33. Zhang, S.L., Bao, T. and Liu, C. (2023), "Model tests and numerical modeling of the failure behavior of composite strata caused by tunneling under pipeline leakage conditions", Eng. Fail. Anal., 149, 13. https://doi.org/10.1016/j.engfailanal.2023.107287.
  34. Zhang, X., Luo, B., Xu, Y.J. and Yang, Z.W. (2024), "Theoretical analysis of stratum horizontal displacements caused by small radius curve shield tunneling", Comput. Geotech., 165. https://doi.org/10.1016/j.compgeo.2023.105950.
  35. Zhang, Z.G., Zhang, M.X. and Zhao, Q.H. (2015), "A simplified analysis for deformation behavior of buried pipelines considering disturbance effects of underground excavation in soft clays", Arabian J. Geosci., 8(10), 7771-7785. https://doi.org/10.1007/s12517-014-1773-4.
  36. Zhang, Z.G., Zhao, Q.H. and Zhang, M.X. (2016), "Deformation analyses during subway shield excavation considering stiffness influences of underground structures", Geomech. Eng., 11(1), 117-139. https://doi.org/10.12989/gae.2016.11.1.117.