DOI QR코드

DOI QR Code

Passive vibration control of sandwich beams with FGM faces and viscoelastic core resting on nonlinear foundation system

  • Hadj Youzera (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli) ;
  • Abdallah Zine (Department of Civil Engineering, Faculty of Science and Technology, University of Relizane) ;
  • Sid Ahmed Meftah (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite Djillali Liabes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Department of Civil Engineering) ;
  • Mofareh Hassan Ghazwani (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Ali Alnujaie (Mechanical Engineering Department, Faculty of Engineering, Jazan University)
  • Received : 2024.06.07
  • Accepted : 2024.11.08
  • Published : 2024.11.25

Abstract

The aim of the present investigation is focused on the nonlinear forced vibration analysis of porous FGM sandwich beam with a viscoelastic core resting on nonlinear elastic foundation. The analytical formulation incorporates both normal and shear deformations in the core by utilizing the Zig-Zag theories. The harmonic balance method is integrated with a one-mode Galerkin's procedure designed for a simply supported beam. The nonlinear geometric coupling and viscoelastic effects result in a frequency amplitude equation that is nonlinear and governed by multiple complex coefficients. The damping and frequency response curves are depicted and analyzed across various geometrical and mechanical configurations of sandwich beams. The results indicate that the porosity effects and elastic coefficients of the foundation exert a significant influence on the damping and nonlinear vibration response of these beams.

Keywords

References

  1. Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2023), "A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force", J. Mech. Mater. Struct., 18(1), 125-141. https://doi.org/10.2140/jomms.2023.18.125.
  2. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  3. Alimoradzadeh, M. and Akbas, S.D. (2023), "Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation", Geomech. Eng., 32(2), 125-135. https://doi.org/10.12989/gae.2023.32.2.125.
  4. Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Large amplitude free vibrations of FGM beams on nonlinear elastic foundation in thermal field based on neutral/mid-plane formulations", Iranian J. Sci. Tech. T. Mech. Eng., 45, 611-630. https://doi.org/10.1007/s40997-020-00389-y.
  5. Bagheri, H., Kiani, Y. and Eslami, M.R. (2023), "Geometrically nonlinear response of FGM beams on elastic foundation subjected to thermal shock", Iranian J. Sci. Tech. T. Mech. Eng., 47(1), 187-201. https://doi.org/10.1007/s40997-022-00506-z.
  6. Dang, V.H. and Nguyen, T.H. (2022), "Buckling and nonlinear vibration of functionally graded porous micro-beam resting on elastic foundation", Mech. Adv. Compos. Struct., 9(1), 75-88. https://doi.org/10.22075/macs.2021.24098.1350.
  7. El-Borgi, S., Rajendran, P. and Trabelssi, M. (2023), "Nonlocal and surface effects on nonlinear vibration response of a graded Timoshenko nanobeam", Arch. Appl. Mech., 93(1), 151-180. https://doi.org/10.1007/s00419-022-02120-6.
  8. Esfahani, S.E., Kiani, Y., Komijani, M. and Eslami, M.R. (2014), "Vibration of a temperature-dependent thermally pre/postbuckled FGM beam over a nonlinear hardening elastic foundation", J. Appl. Mech., 81(1), 011004 https://doi.org/10.1115/1.4023975.
  9. Fallah, A. and Aghdam, M.M. (2012), "Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation", Compos. Part B: Eng., 43(3), 1523-1530. https://doi.org/10.1016/j.compositesb.2011.08.041.
  10. Fu, Y., Wang, J. and Mao, Y. (2011), "Nonlinear vibration and active control of functionally graded beams with piezoelectric sensors and actuators", J. Intel. Mat. Syst. Str., 22(18), 2093-2102. https://doi.org/10.1177/1045389X11425277.
  11. Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
  12. Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method", Eur. Phys. J. Plus, 134(1), 23. https://doi.org/10.1140/epjp/i2019-12446-0.
  13. Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of reinforced composite material", Shock Vib. Dig., 9, 9-17. https://doi.org/10.1177/058310247700900205.
  14. Gibson, R.F. and Wilson, D.G. .(1979), "Dynamic mechanical properties of fiber-reinforced composite materials", Shock Vib Dig., 111, 3-11. https://doi.org/10.1177/058310247901101001.
  15. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1.
  16. Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound Vib., 324(3-5), 962-982. https://doi.org/10.1016/j.jsv.2009.02.023.
  17. Mahmoudpour, E., Hosseini-Hashemi, S.H. and Faghidian, S. (2018), "Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model", Appl. Math. Model., 57(4), 302-315. https://doi.org/10.1016/j.apm.2018.01.021.
  18. Mohamed, S.A., Assie, A.E., Eltaher, M.A., Abo-bakr, R.M. and Mohamed, N. (2024), "Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations", Mech. Based Des. Struc., 1-28. https://doi.org/10.1080/15397734.2024.2328339.
  19. Moita, J.S., Araujo, A.L., Soares, C.M.M. and Soares, C.A.M. (2018), "Vibration analysis of functionally graded material sandwich structures with passive damping", Compos. Struct., 183, 407-415. https://doi.org/10.1016/j.compstruct.2017.04.045.
  20. Nakra, B.C. (1981), "Vibration control with viscoelastic material", II. Shock Vib Dig; 13, 17-20. https://doi.org/10.1177/058310248101300104.
  21. Nakra BC. (1984), "Vibration control with viscoelastic material", II. Shock Vib Dig., 16, 17-22. https://doi.org/10.1177/058310248401600505.
  22. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM J. Appl. Math. Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
  23. Ozdemir, M.E. and Yaylaci, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind Struct., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
  24. Shen, H.S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundation in thermal environments", Int. J. Mech. Sci., 81,1 95-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020.
  25. Touratier M. (1991), "An efficient standard plate theory", Int J. Eng. Sci., 529, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  26. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93(4), 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
  27. Yaylaci, E.U., Yaylaci, M., Ozdemir, M.E., Terzi, M. and Ozturk, S. (2023a), "Analyzing the mechano-bactericidal effect of nanopatterned surfaces by finite element method and verification with artificial neural networks" , Adv. Nano Res., 15(2), 165-174. https://doi.org/10.12989/anr.2023.15.2.165.
  28. Yaylaci, E.U., Ozdemir, M.E., Guvercin, Y., Ozturk, S. and Yaylaci, M. (2023b), "Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM", Adv. Nano Res., 15(6), 567-577. https://doi.org/10.12989/anr.2023.15.6.567.
  29. Yaylaci, M., Oner, E., Adiyaman, G., Ozturk, S., Uzun Yaylaci, E. and Birinci, A. (2024), "Analyzing of continuous and discontinuous contact problems of a functionally graded layer: theory of elasticity and finite element method", Mech. Based Des. Struc., 52(8), 5720-5738. https://doi.org/10.1080/15397734.2023.2262562.
  30. Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023c), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  31. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022a), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  32. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022b), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  33. Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  34. Yaylaci, E.U., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  35. Yaylaci, M. (2022d) , "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  36. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022f), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  37. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  38. Yang, C., Jin, G., Ye, X. and Liu, Z. (2016), "A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials", Int. J. Mech. Sci., 106, 1-18. https://doi.org/10.1016/j.ijmecsci.2015.11.031.
  39. Yang, J., Huang, X.H. and Shen, H.S. (2020), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative Poisson's ratio", Int. J. Struct. Stab. Dynam., 20(4), 2050043. https://doi.org/10.1142/S0219455420500431.
  40. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.
  41. Youzera, H., Selim Saleh, M.M., Ghazwani, M.H., Meftah, S.A., Tounsi, A. and Cuong-Le, T. (2023), "Nonlinear damping and forced vibration analysis of sandwich functionally graded material beams with composite viscoelastic core layer", Mech. Based Des. Struc., 1-20. https://doi.org/10.1080/15397734.2023.2229911.
  42. Xie, K., Wang, Y. and Fu, T. (2020), "Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique", Int. J. Mech. Mater Design, 16(12), 839-855. https://doi.org/10.1007/s10999-020-09493-y.
  43. Xie, K., Wang, Y., Fan, X. and Fu, T. (2020), "Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories", Appl. Math. Model., 77(2), 1860-1880. https://doi.org/10.1016/j.apm.2019.09.024.
  44. Xu, J. and She, G.L. (2023), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
  45. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.