DOI QR코드

DOI QR Code

Bond behavior between concrete substrate and fabric reinforced cementitious matrix composite

  • Yujae Seo (Architectural Convergence Laboratory of Industry-Academic Cooperation Foundation, Hankyong National University) ;
  • Hyunjin Ju (School of Architecture and Design Convergence, Hankyong National University)
  • 투고 : 2024.10.04
  • 심사 : 2024.10.31
  • 발행 : 2024.11.25

초록

The fabric-reinforced cementitious matrix (FRCM) method is a structural strengthening method for RC structures supplementing the shortcomings of the fiber-reinforced polymer method in terms of heat resistance and suitability. As the FRCM is a strengthening method applied to the surface of RC structural members, its strengthening effect is determined based on the bond behavior between structural members and FRCM composites. In this study, six specimens were prepared for a double shear test to identify the bond behavior between FRCM and RC members. The main variables of the specimens were the number of fabric layers and the spacing between the fabrics. All the specimens exhibited the ultimate strength improvement of 61% to 337% compared to the control specimen depending on the number of fabric layers and the spacing between the fabrics, and the failure mode changed fracture after slip of fabric to debonding between the fabrics and cement matrix depending on the number of fabric layers. A bond behavior model is proposed modifying the existing bond mechanism to consider the number of fabric layers and the spacing between the fabrics. It also considers the interaction between the fibers in the weft direction and the cement matrix. The proposed model was validated for evaluating the bond strength of the FRCM with carbon fabric.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.2021R1C1C2093437).

참고문헌

  1. Abu Obaida, F., El-Maaddawy, T. and El-Hassan, H. (2021), "Bond behavior of carbon fabric-reinforced matrix composites: geopolymeric matrix versus cementitious mortar", Build, 11(5). https://doi.org/10.3390/buildings11050207.
  2. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, ACI 318R-19, American Concrete Institute (ACI), Farmingtom Hills, MI, USA.
  3. ACI 440 (2008), Guide for the Design and Constrction of Externally Bonded FRP Systems for Stregnthening Concrete Structures, ACI 440.2R-08, American Concrete Istitute (ACI) Farmington Hills, MI, USA.
  4. ACI 549 (2020), Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures, ACI 549.4R-20, American Concrete Istitute (ACI) Farmington Hills, MI, USA.
  5. Alabdulhady, M.Y. and Sneed, L.H. (2018), "A study of the effect of fiber orientation on the torsional behavior of RC beams strengthened with PBO-FRCM composite", Construct. Build. Mater., 166, 839-854. https://doi.org/10.1016/j.conbuildmat.2018.02.004.
  6. Alabdulhady, M.Y., Sneed, L.H. and Carloni, C. (2017), "Torsional behavior of RC beams strengthened with PBO-FRCM composite - An experimental study", Eng. Struct., 136, 393-405. https://doi.org/10.1016/j.engstruct.2017.01.044.
  7. Ascione, F., Lamberti, M., Napoli, A. and Realfonzo, R. (2020), "Bond-slip models for the interface between steel fabric reinforced cementitious matrix and concrete substrate", Compos. C Open Access, 3. https://doi.org/10.1016/j.jcomc.2020.100078.
  8. Ascione, F., Lamberti, M., Napoli, A., Razaqpur, A.G. and Realfonzo, R. (2019), "Modeling SRP-concrete interfacial bond behavior and strength", Eng. Struct., 187, 220-230. https://doi.org/10.1016/j.engstruct.2019.02.050.
  9. Awani, O., El-Maaddawy, T. and Ismail, N. (2017), "Fabric-reinforced cementitious matrix: A promising strengthening technique for concrete structures", Construct. Build. Mater., 132, 94-111. https://doi.org/10.1016/j.conbuildmat.2016.11.125.
  10. Awani, O., Refai, A.E. and El-Maaddawy, T. (2015), "Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests", Construct. Build. Mater., 101, 39-49. https://doi.org/10.1016/j.conbuildmat.2015.10.017.
  11. Azam, R. and Soudki, K. (2014), "FRCM Strengthening of shear-critical RC beams", J. Compos. Construct., 18(5). https://doi.org/10.1061/(asce)cc.1943-5614.0000464.
  12. Biscaia, H.C., Chastre, C. and Silva, M.A.G. (2012), "Double shear tests to evaluate the bond strength between GFRP/concrete elements", Compos. Struct., 94(2), 681-694. https://doi.org/10.1016/j.compstruct.2011.09.003.
  13. Blanksvard, T., Taljsten, B. and Carolin, A. (2009), "Shear strengthening of concrete structures with the use of mineral-based composites", J. Compos. Construct., 13(1), 25-34. https://doi.org/10.1061/(asce)1090-0268(2009)13:1(25).
  14. CAM/CSA-S806-02 (2002), Design and Construction of Building Components with Fibre-Reinforced Polymers, CAM/CSA-S806-02, Canada Standards Association, Canada.
  15. Choi, D., Vachirapanyakun, S., Ochirbud, M., Naidangjav, U., Ha, S. and Kim, Y. (2021), "Tensile Performance, Lap-Splice Length and Behavior of Concretes Confined by Prefabricated C-FRCM System", Int. J. Concr. Struct. Mater., 15(1). https://doi.org/10.1186/s40069-021-00481-w.
  16. Cosenza, E., Manfredi, G. and Realfonzo, R. (1997), "Behavior and modeling of bond of FRP rebars to concrete", J. Compos. Construct., 1(2), 40-51. https://doi.org/10.1061/(asce)1090-0268(1997)1:2(40).
  17. Cruz, J.S. and Barros, J. (2004), "Modeling of bond between near-surface mounted CFRP laminate strips and concrete", Comput. Struct., 82(17-19), 1513-1521. https://doi.org/10.1016/j.compstruc.2004.03.047.
  18. D'Ambrisi, A., Feo, L. and Focacci, F. (2012), "Bond-slip relations for PBO-FRCM materials externally bonded to concrete", Compos. B. Eng., 43(8), 2938-2949. https://doi.org/10.1016/j.compositesb.2012.06.002.
  19. D'Ambrisi, A., Feo, L. and Focacci, F. (2013a), "Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry", Compos. B. Eng, 46, 15-20. https://doi.org/10.1016/j.compositesb.2012.10.018.
  20. D'Ambrisi, A., Feo, L. and Focacci, F. (2013b), "Experimental analysis on bond between PBO-FRCM strengthening materials and concrete", Compos. B. Eng, 44(1), 524-532. https://doi.org/10.1016/j.compositesb.2012.03.011.
  21. D'Antino, T., Sneed, L.H., Carloni, C. and Pellegrino, C. (2015), "Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints", Construct. Build. Mater., 101, 838-850. https://doi.org/10.1016/j.conbuildmat.2015.10.045,
  22. Dai, J., Ueda, T. and Sato, Y. (2004), "Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method", J. Compos. Construct., 9(1), 52-62. https://doi.org/10.1061/(asce)1090-0268(2005)9:1(52).
  23. De Santis, S., de Felice, G. and Roscini, F. (2019), "Retrofitting of masonry vaults by basalt textile-reinforced mortar overlays", Inter. J. Archit. Heritage, 13(7), 1061-1077. https://doi.org/10.1080/15583058.2019.1597947.
  24. Escrig, C., Gil, L., Bernat-Maso, E. and Puigvert, F. (2015), "Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar", Construct. Build. Mater., 83, 248-260. https://doi.org/10.1016/j.conbuildmat.2015.03.013.
  25. Grande, E., Imbimbo, M. and Sacco, E. (2018), "Numerical investigation on the bond behavior of FRCM strengthening systems", Compos. B. Eng., 145, 240-251. https://doi.org/10.1016/j.compositesb.2018.03.010.
  26. Hadad, H.A., Erickson, B. and Nanni, A. (2020), "Flexural analysis and design of FRCM-strengthened RC beams", Construct. Build. Mater., 244, 118371. https://doi.org/10.1016/j.conbuildmat.2020.118371.
  27. Jo, M.S., Kim, H.G., Kim, D.H., Choi, J.H. and Kim, K.H. (2023), "Prediction of flexural strength of RC circular columns considering lateral confinement effects of FRCM and transverse steel reinforcement", Build., 13, 2361. https://doi.org/10.3390/buildings13092361.
  28. Jo, M.S., Kim, H.G., Lee, Y.J., Kim, D.H. and Kim, K.H. (2022), "Evaluation of mechanical properties and flexural behavior of FRCM system composed of different types of textile grid and AL powder", Construct. Build. Mater., 323, 126552. https://doi.org/10.1016/j.conbuildmat.2022.126552.
  29. Ju, H., Lee, D.H., Cho, H.C., Kim, K.S., Yoon, S. and Seo, S.Y. (2014), "Application of hydrophilic silanol-based chemical grout for strengthening damaged reinforced concrete flexural members", Mater (Basel), 7(6), 4823-4844. https://doi.org/10.3390/ma7064823.
  30. Jung, K., Hong, K., Han, S., Park, J. and Kim, J. (2015), "Prediction of flexural capacity of RC beams strengthened in flexure with FRP fabric and cementitious matrix", Int. J. Polym. Sci., 2015, 1-11. https://doi.org/10.1155/2015/868541.
  31. Kadolph, S.J. (2010), Textiles: Basics, Pearson Highe. Minafo, G., La Mendola, L. and Oddo, M.C. (2022), "A numerical study to predict the mechanical response of FRCM composites", Key Eng. Mater., 916, 230-238. https://doi.org/10.4028/p9ivqd1.
  32. Mukhtar, F.M. and Faysal, R.M. (2018), "A review of test methods for studying the FRP-concrete interfacial bond behavior", Construct. Build. Mater., 169, 877-887. https://doi.org/10.1016/j.conbuildmat.2018.02.163.
  33. Oddo, M.C., La Mendola, L. and Minafo, G. (2022), "Numerical modeling of bond behaviour in fabric reinforced cementitious matrix strengthened reinforced concrete members", FIB SYMPOSIUM PROCEEDINGS.
  34. Oddo, M.C., Minafo, G. and La Mendola, L. (2023), "Experimental investigation on tensile and shear bond behaviour of Basalt-FRCM composites for strengthening calcarenite masonry elements", Procedia Struct. Intergrity, 44, 2294-2301. https://doi.org/10.1016/j.prostr.2023.01.293.
  35. Ombres, L. (2015), "Analysis of the bond between fabric reinforced cementitious mortar (FRCM) strengthening systems and concrete", Compos. B. Eng., 69, 418-426. https://doi.org/10.1016/j.compositesb.2014.10.027.
  36. Peled, A. and Bentur, A. (2000), "Geometrical characteristics and efficiency of textile fabrics for reinforcing cement compostes", Cem. Concre. Compos., 30, 781-790. https://doi.org/10.1016/s0008-8846(00)00239-8.
  37. Pellegrino, C., Tinazzi, D. and Modena, C. (2008), "Experimental study on bond behavior between concrete and FRP reinforcement", J. Compos. Construct., 12(2), 180-189. https://doi.org/10.1061/(asce)1090-0268(2008)12:2(180).
  38. Raoof, S.M., Koutas, L.N. and Bournas, D.A. (2016), "Bond between textile-reinforced mortar (TRM) and concrete substrates: Experimental investigation", Compos. B. Eng., 98, 350-361. https://doi.org/10.1016/j.compositesb.2016.05.041.
  39. Raoof, S.M., Koutas, L.N. and Bournas, D.A. (2017), "Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams", Construct. Build. Mater., 151, 279-291. https://doi.org/10.1016/j.conbuildmat.2017.05.023.
  40. Seo, Y., Ju, H. and Choi, D. (2023), "Flexural performance of one-way reinforced concrete slab strengthened by carbon fabric reinforced cementitious matrix", J. Korea Concr. Inst., 35(1), 37-47. https://doi.org/10.4334/jkci.2023.35.1.037.
  41. Sneed, L.H., D'Antino, T., Carloni, C. and Pellegrino, C. (2015), "A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests", Cem Concr. Compos., 64, 37-48. https://doi.org/10.1016/j.cemconcomp.2015.07.007.
  42. Tetta, Z.C., Koutas, L.N. and Bournas, D.A. (2015), "Textilere-inforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams", Compos. B. Eng., 77, 338-348. https://doi.org/10.1016/j.compositesb.2015.03.055.
  43. Tran, C.T.M., Stitmannaithum, B. and Ueda, T. (2014), "Investigation of the bond behaviour between PBO-FRCM strengthening material and concrete", J. Adv. Concr. Technol., 12(12), 545-557. https://doi.org/10.3151/jact.12.545.
  44. Xu, S., Kruger, M., Reinhardt, H.W. and Ozbolt, J. (2004), "Bond characteristics of carbon, alkali resistant glass, and aramid textiles in mortar", J. Mater. Civil Eng., 16(4), 356-364. https://doi.org/10.1061/(asce)0899-1561(2004)16:4(356).
  45. Younis, A. and Ebead, U. (2018), "Bond characteristics of different FRCM systems", Construct. Build. Mater., 175, 610-620. https://doi.org/10.1016/j.conbuildmat.2018.04.216.
  46. Zhu, M., Zhu, J.H., Ueda, T., Matsumoto, K. and Su, M. (2021), "Bond behavior of carbon fabric reinforced cementitious matrix (FRCM) composites considering matrix impregnation", Compos. Struct., 262. https://doi.org/10.1016/j.compstruct.2020.113350.