DOI QR코드

DOI QR Code

Experimental study on the leakage behavior of aerosol particles in capillary tubes

  • Wang Hui (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Sun Zhongning (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Xing Ji (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Li Yuchen (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Gu Haifeng (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • 투고 : 2024.02.27
  • 심사 : 2024.06.15
  • 발행 : 2024.11.25

초록

The leakage rate of aerosol particles is one of the most important parameters for source term evaluation of containment in severe accidents. In this study, gas leakage characteristics experiments were conducted on capillaries with different inner diameters and tube lengths under different pressure differential conditions. The effects of upstream and downstream pressure differential, capillary tube diameter, tube length, aerosol particle size, whether condensation or not, and release time on aerosol leakage rate were studied. The results show that when the pressure difference between the two ends of the capillary is greater than 0.2 MPa, the leakage rate of the capillary shows a pattern of first increasing and then decreasing with the increase of the pipe diameter; The influence of aerosol particle size on leakage rate mainly affects the inertial deposition effect, which increases with the increase of particle size, leading to a decrease in leakage rate; The condensation effect of steam in capillaries can lead to enhanced effects such as condensate capture, thermophoresis, and diffusion electrophoresis, which have a positive strengthening effect on the retention of aerosol particles.

키워드

참고문헌

  1. J. Chen, P. Gao, H. Gu, et al., Experimental study of the natural deposition of submicron aerosols on the surface of a vertical circular tube with non-condensable gases, Nucl. Eng. Des. (2024) 417 (Feb.). 
  2. Q. Sun, Y. Chen, Y. Zhou, et al., Experimental study of insoluble aerosol wash-down by condensate on quasi-horizontal plate, Prog. Nucl. Energy (2023) 166 (Dec.). 
  3. H.J. Allelein, A. Auvinen, J. Ball, et al., State-ofthe-art Report on Nuclear aerosols. [R].CSNI Report,, 2009. 
  4. J. Li, G. Chen, R. Zhang, et al., Development and feasibility study of the containment leakage rate measurement technology using the constant pressure method, J. Harbin Eng. Univ. 44 (7) (2023) 1124-1130. 
  5. R.K. Hilliard, A.K. Postma, Large-scale fission product containment tests, Nucl. Technol. 53 (2) (1981) 163-175.  https://doi.org/10.13182/NT81-A32621
  6. H.A. Morewitz, Leakage of aerosols from containment buildings, Health Phys. 42 (2) (1982) 195-207.  https://doi.org/10.1097/00004032-198202000-00010
  7. L.E. Herranz, J. Ball, A. Auvinen, D. Bottomley, A. Dehbi, C. Housiadas, Progress in understanding key aerosol issues, Prog. Nucl. Energy 52 (1) (2010) 120-127.  https://doi.org/10.1016/j.pnucene.2009.09.013
  8. M.M.R. Williams, Particle deposition and plugging in tubes and cracks (with special reference to fission product retention), Prog. Nucl. Energy 28 (1) (1994) 1-60.  https://doi.org/10.1016/0149-1970(94)90015-9
  9. D. Magallon, A. Mailliat, J.-M. Seiler, K. Atkhen, H. Sjovall, S. Dickinson, L.E. H. Puebla, European expert network for the reduction of uncertainties in severe accident safety issues (EURSAFE), Nucl. Eng. Des. 235 (2-4) (2005) 309-346.  https://doi.org/10.1016/j.nucengdes.2004.08.042
  10. N.A. Fuchs Translated, R.E. Daisley, Marina Fuchs, C.N. Davies (Eds.), The Mechanics of Aerosols, Pergamon Press), London, 1964, p. 408, 82 Figures; 40 Tables. £6. (1965). Quarterly Journal of the Royal Meteorological Society, 91(388), 249-249. 
  11. G. Scheuch, J. Heyder, Diffusional losses of nonspherical particles in tubes, J. Aerosol Sci. 17 (3) (1986) 432-435.  https://doi.org/10.1016/0021-8502(86)90124-2
  12. A.C. Burton, J.P. Mitchell, D.A.V. Morton, The influence of pressure on the penetration of aerosols through fine capillaries, Aerosol Sci. 24 (Suppl. 1) (1993) 559-560.  https://doi.org/10.1016/0021-8502(93)90040-G
  13. F. Parozzi, S. Chatzidakis, C. Housiadas, Investigations on aerosol transport in containment cracks, in: International Conference "Nuclear Energy for New Europe 2005"At, Bled, Slovenia, September 2005. 
  14. Farzan Tavakoli, K. Mitra Sushanta, S. Olfert Jason, Aerosol penetration in microchannels, J. Aerosol Sci. 42 (2011) 321-328.  https://doi.org/10.1016/j.jaerosci.2011.02.007
  15. O. Ghaffarpasand, F. Drewnick, F. Hosseiniebalam, S. Gallavardin, J. Fachinger, S. Hassanzadeh, S. Borrmann, Penetration efficiency of nanometer-sized aerosol particles in tubes, J. Aerosol Sci. 50 (2012) 11-25. https://doi.org/10.1016/j.jaerosci.2012.03.002
  16. Z. Zhang, H. Dang, L. Liu, Investigation on correlation of aerosol leakage rate with gas leakage rate in capillary, Atomic Energy Sci. Technol. 46 (12) (2012) 1517-1521. 
  17. M. Tian, H. Gao, X. Han, Y. Wang, R. Zou, Experimental study on the penetration efficiency of fine aerosols in thin capillaries, J. Aerosol Sci. 111 (2017) 26-35.  https://doi.org/10.1016/j.jaerosci.2017.06.001
  18. X. Sun, H. Wang, Q. Chen, et al., Aerosol leakage and retention studies in microchannels, Science & Technology Vision (32) (2022) 27-33. 
  19. H. Wang, J. Xing, Z. Sun, et al., Experimental and theoretical analysis on characteristics of gas leakage through capillary tubes, J. Harbin Eng. Univ. 42 (12) (2021) 1714-1719. 
  20. N. Zhang, H. Gu, J. Wang, et al., Research and experiments for aerosol sampling and measurement technique, Appl. Sci. Technol. 40(2) (2013).