DOI QR코드

DOI QR Code

Performance evaluation of Yonsei Single-photon Emission Computed Tomography (YSECT) for partial-defect inspection within PWR-type spent nuclear fuel

  • Hyung-Joo Choi (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Yoon Soo Chung (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Hojik Kim (Korea Institute of Nuclear Nonproliferation and Control) ;
  • Sung-Woo Kwak (Korea Institute of Nuclear Nonproliferation and Control) ;
  • Heejun Chung (Korea Institute of Nuclear Nonproliferation and Control) ;
  • Hee-Kyun Baek (NeosisKorea Co. Ltd) ;
  • Jung-ki Shin (NeosisKorea Co. Ltd) ;
  • Yong Hyun Chung (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chul Hee Min (Department of Radiation Convergence Engineering, Yonsei University)
  • Received : 2024.03.18
  • Accepted : 2024.06.08
  • Published : 2024.11.25

Abstract

As the amount of power generated by nuclear power plants increases, the importance of managing Spent Nuclear Fuel (SNF) to prevent proliferation increases as well. In a previous study, we optimally designed the gamma emission tomography instrument named Yonsei Single-photon Emission Computed Tomography version 2 (YSECT.v.2) based on Monte Carlo (MC) simulation for inspection and detection of defects in SNF. The objective of the current study was to fabricate a prototype YSECT.v.2 instrument and to evaluate its performance. The YSECT.v.2 instrument consists of scintillator-based detection modules, a multi-channel data acquisition (DAQ) module, a heat reduction module, and a waterproof housing. Based on the experimental results for a mock-up of fresh nuclear fuel rods, the spatial resolution of the prototype YSECT.v.2 instrument was determined to be 10.8 mm. In the experiment with 137Cs test sources, a high-quality image could be obtained with the exclusion of the pixel value below the threshold. For a 6 × 6 array, the spatial resolution for 137Cs was analyzed to be 7.2 mm. Considering these results, we expected that source distribution could be distinguishable using the YSECT.v.2. In the future, further experimentation will validate the performance of the fabricated instrument for a mock-up of SNF rods in water.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Com mission (NSSC) of the Republic of Korea (No. 2106073), the Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000070), and the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (RS-2023-00257279).

References

  1. I.A.E. Agency, Nuclear power reactors in the world, International Atomic Energy Agency. https://www.iaea.org/publications/15485/nuclear-power-reactors-in-the-world, 2023. (Accessed 13 February 2024). 
  2. I.A.E. Agency, Storing spent fuel until transport to reprocessing or disposal, International Atomic Energy Agency, in: https://www.iaea.org/publications/12302/storing-spent-fuel-until-transport-to-reprocessing-or-disposal, 2019. (Accessed 13 February 2024). 
  3. I.A.E. Agency, Status and trends in spent fuel and radioactive waste management, International Atomic Energy Agency. https://www.iaea.org/publications/14739/status-and-trends-in-spent-fuel-and-radioactive-waste-management, 2022. (Accessed 14 February 2024). 
  4. I.A.E. Agency, Storage of spent nuclear fuel, International Atomic Energy Agency. https://www.iaea.org/publications/8532/storage-of-spent-nuclear-fuel, 2012. (Accessed 14 February 2024). 
  5. J. Lim, W. Choi, Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport, Nucl. Eng. Technol. 54 (2022) 4030-4048, https://doi.org/10.1016/j.net.2022.06.023. 
  6. J. Lim, W. Choi, Data analysis of simulated fuel-loaded sea transportation tests under normal conditions of transport, Nucl. Eng. Technol. 56 (2024) 375-388, https://doi.org/10.1016/j.net.2023.10.008. 
  7. I.A.E. Agency, IAEA Safeguards glossary, International Atomic Energy Agency. https://www.iaea.org/publications/15176/iaea-safeguards-glossary, 2022. (Accessed 14 February 2024). 
  8. B. Siskind, Measurement of spent fuel assemblies - overview of the status of the Technology for initiating discussion at NATIONAL RESEARCH CENTRE KURCHATOV INSTITUTE june 2013, Brookhaven National Lab. (BNL), Upton, NY (United States) (2013), https://doi.org/10.2172/1091774. 
  9. I.A.E. Agency, Safeguards techniques and equipment:, International Atomic Energy Agency. https://www.iaea.org/publications/8695/safeguards-techniques-and-equipment, 2011. (Accessed 14 February 2024). 
  10. E.L. Smith, S. Jacobsson, V. Mozin, P. Jansson, E. Miller, T. Honkamaa, N. Deshmukh, T.A. White, R. Wittman, H. Trellue, S. Grape, A. Davour, S. Vaccaro, P. Andersson, S. Holcombe, Aviability study of gamma emission tomography for spent fuel verification : JNT 1955 phase I technical report. https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306584, 2016. (Accessed 13 February 2024). 
  11. E.A. Miller, L.E. Smith, R.S. Wittman, L.W. Campbell, N.S. Deshmukh, M. A. Zalavadia, M.A. Batie, V.V. Mozin, Hybrid Gama Emission Tomography (HGET): FY16 Annual Report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 2017, https://doi.org/10.2172/1390447. 
  12. A. Sokolov, V. Kondratjev, V. Kourlov, F. Levai, T. Honkamaa, CdTe linear arrays with integrated electronics for passive gamma emission tomography system, in: 2008 IEEE Nuclear Science Symposium Conference Record, IEEE, 2008, pp. 999-1002. 
  13. T. Honkamaa, F. Levai, A. Turunen, R. Berndt, S. Vaccaro, P. Schwalbach, A prototype for passive gamma emission tomography, in: Proc. Symp. Int, Safeguards, 2014, in: https://inis.iaea.org/collection/NCLCollectionStore/_External/safeguards/symposium/2014/home/eproceedings/sg2014-papers/000189.pdf. (Accessed 13 February 2024). 
  14. M. Mayorov, T. White, A. Lebrun, J. Brutscher, J. Keubler, A. Birnbaum, V. Ivanov, T. Honkamaa, P. Peura, J. Dahlberg, Gamma emission tomography for the inspection of spent nuclear fuel, in: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC), IEEE, 2017, pp. 1-2. 
  15. R. Virta, T.A. Bubba, M. Moring, S. Siltanen, T. Honkamaa, P. Dendooven, In-air and in-water performance comparison of Passive Gamma Emission Tomography with activated Co-60 rods, Sci. Rep. 13 (2023) 16189. 
  16. R. Virta, R. Backholm, T.A. Bubba, T. Helin, T. Kahkonen, J. Leppanen, M. Moring, S. Siltanen, P. Dendooven, T. Honkamaa, Verifying spent nuclear fuel with Passive Gamma Emission Tomography prior to disposal in a geological repository in Finland, in: INMM & ESARDA Joint Virtual Annual Meeting, 2021. 
  17. H.J. Choi, I.S. Kang, K.B. Kim, Y.H. Chung, C.H. Min, Optimization of single-photon emission computed tomography system for fast verification of spent fuel assembly: a Monte Carlo study, J. Inst. Met. 14 (2019) T07002, https://doi.org/10.1088/1748-0221/14/07/T07002. 
  18. H. Choi, B.-W. Cheon, M.K. Baek, H. Chung, Y.H. Chung, S.H. You, C.H. Min, H. J. Choi, Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT), Nucl. Eng. Technol. 54 (2022) 1982-1990, https://doi.org/10.1016/j.net.2021.12.035. 
  19. H. Park, H.-J. Choi, H.J. Choi, Y.S. Chung, H.C. Lee, C.H. Min, Evaluation of functional loss to radiation detector in tomographic device for spent-fuel inspection by high-energy photons and neutrons: a preliminary study, Ann. Nucl. Energy 181 (2023) 109558. 
  20. Fabrication of ionization chamber to measure the burnup of spent fuel, J. Radiat. Prot. Res. 35 (n.d.) 21. 
  21. H.S. Kim, J. Lee, S. Choi, Y. Bang, S.-J. Ye, G. Kim, Design and fabrication of CLYC-based rotational modulation collimator (RMC) system for gamma-ray/neutron dual-particle imager, J. Radiat. Prot. Res 46 (2021) 112-119, https://doi.org/10.14407/jrpr.2021.00262. 
  22. T. Kitajima, M. Kai, Detection limit of a NaI(Tl) survey meter to measure 131I accumulation in thyroid glands of children after a nuclear power plant accident, J. Radiat. Prot. Res 48 (2023) 131-143, https://doi.org/10.14407/jrpr.2023.00199. 
  23. V. Ivanovs, S. Gushchin, V. Ivanovs, V. Fjodorovs, D. Kuznecovs, A. Loutchanski, V. Ogorodniks, Temperature stabilization of sipm-based gamma-radiation scintillation detectors, Rad-J. (2018). 
  24. D.C. Spanner, The Peltier effect and its use in the measurement of suction pressure, J. Exp. Bot. (1951) 145-168. 
  25. K.J. Rasmussen, Full-range stress-strain curves for stainless steel alloys, J. Constr. Steel Res. 59 (2003) 47-61.  https://doi.org/10.1016/S0143-974X(02)00018-4
  26. D.R. Dance, S. Christofides, A.D.A. Maidment, I.D. McLean, K.H. Ng, Diagnostic radiology physics: a handbook for teachers and students, in: Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics, 2014. https://www.osti.gov/etdeweb/biblio/22360623.(Accessed 15 February 2024). 
  27. C.R. Crawford, CT filtration aliasing artifacts, IEEE Trans. Med. Imag. 10 (1991) 99-102, https://doi.org/10.1109/42.75616. 
  28. J.F. Barrett, N. Keat, Artifacts in CT: recognition and avoidance, Radiographics 24 (2004) 1679-1691, https://doi.org/10.1148/rg.246045065. 
  29. A. Rose, The sensitivity performance of the human eye on an absolute scale, J. Opt. Soc. Am., JOSA 38 (1948) 196-208, https://doi.org/10.1364/JOSA.38.000196. 
  30. A.E. Burgess, The Rose model, revisited, JOSA A 16 (1999) 633-646. https://doi.org/10.1364/JOSAA.16.000633