DOI QR코드

DOI QR Code

The impact of pressure rate on the physical, structural and gamma-ray shielding capabilities of novel light-weight clay bricks

  • Mohamed Y. Hanfi (Ural Federal University) ;
  • A.M. Abu El-Soad (Ural Federal University) ;
  • Nadi Mlihan Alresheedi (Department of General Studies, Royal Commission for Jubail and Yanbu, Yanbu Industrial College) ;
  • Sultan J. Alsufyani (Department of Physics, College of Science, Taif University) ;
  • K.A. Mahmoud (Ural Federal University)
  • 투고 : 2024.06.04
  • 심사 : 2024.09.17
  • 발행 : 2024.11.25

초록

The present study focuses on investigating the gamma-ray protection features of clay bricks for potential use in radiation shielding fields. The study examined the physical and structural features that affect the performance of these stones in shielding γ-rays. The density (ρ, g/cm3) of the clay bricks samples was measured utilizing the MH-300A density meter. Additionally, the mineral structure within the annealed pressed clay samples was identification the XRD spectrometry. Moreover, the morphology and elemental chemical composition for the annealed bricks were examined using a Thermo Scientific Prisma E, USA field emission Scanning Electron Microscope (SEM) in conjunction with Energy Dispersive X-ray Spectroscopy. Besides, the shielding features of the clay bricks were analyzed using the experimentally measurements (by NaI (Tl) scintillation detector), XCOM software, and Monte Carlo Simulation over the γ-ray energy interval of 0.033-1.332 MeV. The findings of the study indicate that an increase in the pressure rate within the clay bricks samples leads to the rise in their density (from 1.62 to 1.87 g/cm3). This increase in density is accompanied by a decline in both porosity (Φ, %) (from 34.75 to 26.21 %) and water absorption (K, %) (from 26.21 to 14.74 %) factors. Furthermore, the increase in pressure rate from 7.61 to 114.22 MPa also results in an increase in the linear attenuation coefficient (μ, cm-1) of the clay bricks under study. This is achieved by increasing the μ values from 0.39 to 0.43 cm-1, from 0.13 to 0.15 cm-1, and from 0.09 to 0.10 cm-1, at 0.081, 0.511 and 1.173 MeV, respectively. The synthetic bricks offer a lead-free and efficient option for protection, making them ideal for use in nuclear facility start-ups or in areas with radiation exposure.

키워드

과제정보

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSSP-2024-118)

참고문헌

  1. M. Dong, S. Zhou, X. Xue, X. Feng, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. 188 (2021) 109601, https://doi.org/10.1016/j.radphyschem.2021.109601. 
  2. H.S. Mann, G.S. Brar, G.S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127 (2016) 97-101, https://doi.org/10.1016/j.radphyschem.2016.06.013. 
  3. S.I.A. Ali, E. Lubloy, Radiation shielding structures : concepts, behaviour and the role of the heavy weight concrete as a shielding material - rewiev, Concrete Structures 21 (2020) 24-30, https://doi.org/10.32970/CS.2020.1.4. 
  4. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, K.A. Mahmoud, I. Akkurt, E. S. Yousef, Evaluation of radiation shielding capacity of vanadium-tellurite-antimonite semiconducting glasses, Opt. Mater. 114 (2021) 110897, https://doi.org/10.1016/j.optmat.2021.110897. 
  5. K. Singh, S. Singh, A.S. Dhaliwal, G. Singh, Gamma radiation shielding analysis of lead-flyash concretes, Appl. Radiat. Isot. 95 (2015) 174-179, https://doi.org/10.1016/j.apradiso.2014.10.022. 
  6. K.G. Mahmoud, M.S. Alqahtani, O.L. Tashlykov, V.S. Semenishchev, M.Y. Hanfi, The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: experimental evaluations, Radiat. Phys. Chem. 206 (2023) 110793, https://doi.org/10.1016/j.radphyschem.2023.110793. 
  7. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022. 
  8. Y. Al-Hadeethi, M.I. Sayyed, BaO-Li2O-B2O3 glass systems: potential utilization in gamma radiation protection, Prog. Nucl. Energy 129 (2020) 103511, https://doi.org/10.1016/j.pnucene.2020.103511. 
  9. Mohammad Yoshandi, Annisa, A review of radiation protection standards for workers in hospital radiology: a narrative literature review, Sriwijaya Journal of Radiology and Imaging Research 1 (2023) 6-9, https://doi.org/10.59345/sjrir.v1i1.7. 
  10. M.I. Sayyed, F.Q. Mohammed, K.A. Mahmoud, E. Lacomme, K.M. Kaky, M. U. Khandaker, M.R.I. Faruque, Evaluation of radiation shielding features of co and ni-based superalloys using mcnp-5 code: potential use in nuclear safety, Appl. Sci. 10 (2020) 1-14, https://doi.org/10.3390/app10217680. 
  11. S. Yasmin, B.S. Barua, M.U. Khandaker, F.U.Z. Chowdhury, M.A. Rashid, D. A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings, Results Phys. 9 (2018) 541-549, https://doi.org/10.1016/j.rinp.2018.02.075. 
  12. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M. A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings, Radiat. Eff. Defect Solid 173 (2018) 657-672, https://doi.org/10.1080/10420150.2018.1493481. 
  13. A.S. Abouhaswa, E. Kavaz, A novel B2O3-Na2O-BaO-HgO glass system: synthesis, physical, optical and nuclear shielding features, Ceram. Int. 46 (2020) 16166-16177, https://doi.org/10.1016/j.ceramint.2020.03.172. 
  14. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, M.A. Imheidat, F. Alshahri, M. Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021) 166790, https://doi.org/10.1016/j.ijleo.2021.166790. 
  15. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D. S. Vasin, A.V. Trukhanov, A.L. Kozlovskiy, M.M. Zdorovets, Effect of the synthesis conditions and microstructure for highly effective electron shields production based on Bi coatings, ACS Appl. Energy Mater. 1 (2018) 1695-1702, https://doi.org/10.1021/acsaem.8b00179. 
  16. K.A. Mahmoud, O.L. Tashlykov, Y. Kropachev, A. Samburov, P. Zakharova, A. M. Abu El-Soad, A close look for the γ-ray attenuation capacity and equivalent dose rate form composites based epoxy resin: an experimental study, Radiat. Phys. Chem. 212 (2023) 111063, https://doi.org/10.1016/j.radphyschem.2023.111063. 
  17. V.A. Osipova, A.V. Pestov, A.V. Mekhaev, A.M.A. Abuelsoad, D.P. Tambasova, D. O. Antonov, E.G. Kovaleva, Functionalization of halloysite by 3-aminopropyltriethoxysilane in various solvents, Petrol. Chem. 60 (2020) 597-600, https://doi.org/10.1134/S0965544120050072. 
  18. T.A. Turner, S.J. Pickering, N.A. Warrior, Composites : Part B Development of recycled carbon fibre moulding compounds - preparation of waste composites, Composites, Part B 42 (2011) 517-525, https://doi.org/10.1016/j.compositesb.2010.11.010. 
  19. H. Durak, E. Kavaz, B. Oto, A. Aras, The impact of Co addition on neutron-photon protection characteristics of red and yellow clays-based bricks: an experimental study, Prog. Nucl. Energy 143 (2022) 104047, https://doi.org/10.1016/j.pnucene.2021.104047. 
  20. H.S. Mann, G.S. Brar, G.S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127 (2016) 97-101, https://doi.org/10.1016/j.radphyschem.2016.06.013. 
  21. M.I. Sayyed, Effect of WO3 on the attenuation parameters of TeO2-La2O3-WO3 glasses for radiation shielding application, Radiat. Phys. Chem. 215 (2024) 111319, https://doi.org/10.1016/j.radphyschem.2023.111319. 
  22. R.S. Aita, K.A. Mahmoud, H.A.A. Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: an experimental examination, Nucl. Eng. Technol. (2024), https://doi.org/10.1016/j.net.2024.01.014. 
  23. T. Van Thuong, O.L. Tashlykov, A.M. Shironina, I.P. Voronin, E.V. Kuvshinova, D. O. Pyltsova, E.I. Nazarov, K.A. Mahmoud, Physical and γ-ray shielding properties of Vietnam's natural stones: an extensive experimental and theoretical study, Nucl. Eng. Technol. 56 (2024) 1932-1940, https://doi.org/10.1016/j.net.2024.03.012. 
  24. M.I. Sayyed, K.A. Mahmoud, S. Islam, O.L. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates, Radiat. Phys. Chem. 174 (2020), https://doi.org/10.1016/j.radphyschem.2020.108925. 
  25. B. Mavi, Experimental investigation of γ-ray attenuation coefficients for granites, Ann. Nucl. Energy 44 (2012) 22-25, https://doi.org/10.1016/j.anucene.2012.01.009. 
  26. A.M. Abu El-Soad, M.I. Sayyed, K.A. Mahmoud, E. S, akar, E.G. Kovaleva, Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code, Appl. Radiat. Isot. 154 (2019), https://doi.org/10.1016/j.apradiso.2019.108882. 
  27. K.A. Mahmoud, A.M.A. El-Soad, E.G. Kovaleva, N. Almousa, M.I. Sayyed, O. L. Tashlykov, Modeling a three-layer container based on halloysite nano-clay for radioactive waste disposal, Prog. Nucl. Energy 152 (2022), https://doi.org/10.1016/j.pnucene.2022.104379. 
  28. K.G. Mahmoud, M.I. Sayyed, S. Hashim, A.H. Almuqrin, A.M. El-Soad, Impacts of halloysite clay nanoparticles on the structural and γ-ray shielding properties of the epoxy resin, Nucl. Eng. Technol. 55 (2023) 1585-1590, https://doi.org/10.1016/j.net.2023.02.015. 
  29. M.Y. Hanfi, A.K. Sakr, A.M. Ismail, B.M. Atia, M.S. Alqahtani, K.A. Mahmoud, Physical characterization and radiation shielding features of B2O3As2O3 glass ceramic, Nucl. Eng. Technol. 55 (2023) 278-284, https://doi.org/10.1016/j.net.2022.09.006. 
  30. T. Van Thuong, O.L. Tashlykov, K.A. Mahmoud, Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: an extensive experimental study, Nucl. Eng. Technol. 56 (2024) 666-672, https://doi.org/10.1016/j.net.2023.11.002. 
  31. Z. Chen, X. Li, L. Lu, B. Yuan, L. Wang, Z. Li, H. Li, Non-toxic and flexible radiation-shielding composites based on natural rubber containing elemental W fillers for efficient shielding against X/γ-rays, Processes 11 (2023) 674, https://doi.org/10.3390/pr11030674. 
  32. M.I. Sayyed, Investigation of radiation shielding features of lithium cadmium silicate glasses, Silicon (2023), https://doi.org/10.1007/s12633-023-02616-y. 
  33. A. Sharma, M.I. Sayyed, O. Agar, M.R. Kacal, H. Polat, F. Akman, Photon-shielding performance of bismuth oxychloride-filled polyester concretes, Mater. Chem. Phys. 241 (2020) 122330, https://doi.org/10.1016/j.matchemphys.2019.122330. 
  34. H. Share Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Permeability and gamma-ray shielding efficiency of clay modified by barite powder, Geotech. Geol. Eng. 37 (2019) 845-855, https://doi.org/10.1007/s10706-018-0654-0. 
  35. H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598, https://doi.org/10.1007/s10064-018-1391-6. 
  36. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding, International Journal of Advanced Nuclear Reactor Design and Technology 3 (2021) 194-199, https://doi.org/10.1016/j.jandt.2021.09.007. 
  37. B. Dogan, N. Altinsoy, Investigation of photon attenuation coefficient of some building materials used in Turkey. https://doi.org/10.1063/1.4914224, 2015. 
  38. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001. 
  39. N.A.M. Alsaif, M. Alotiby, M.Y. Hanfi, M.I. Sayyed, K.A. Mahmoud, B.M. Alotaibi, H.A. Alyousef, Y. Al-Hadeethi, A comprehensive study on the optical, mechanical, and radiation shielding properties of the TeO2-Li2O-GeO2 glass system, J. Mater. Sci. Mater. Electron. (2021) 15226-15241. https://doi.org/10.1007/s10854-021-06074-3. 
  40. M.I. Sayyed, M.Y. Hanfi, K.A. Mahmoud, A. Abdelaziem, Theoretical Investigation of the radiation-protection properties of the CBS glass family, Optik (Stuttg) 258 (2022) 168851. https://doi.org/10.1016/j.ijleo.2022.168851. 
  41. H.A. Al-Yousef, M. Alotiby, M.Y. Hanfi, B.M. Alotaibi, K.A. Mahmoud, M.I. Sayyed, Y. Al-Hadeethi, Effect of the Fe2O3 addition on the elastic and gamma-ray shielding features of bismuth sodium-borate glass system, J. Mater. Sci. Mater. Electron. 32 (2021) 6942-6954. https://doi.org/10.1007/s10854-021-05400-z.