DOI QR코드

DOI QR Code

Geochemical evaluation and hazard indices due to radioactive minerals associated with granitic areas

  • Sherif A. Taalab (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Mohamed Y. Hanfi (Nuclear Materials Authority (NMA)) ;
  • Mohamed S. Ahmed (Geology and Geophysics Department, College of Science, King Saud University) ;
  • Diaa A. Saadawi (Geology Department, Faculty of Science, Al-Azhar University) ;
  • Ahmed K. Sakr (Department of Chemistry and Biochemistry, The University of Hull) ;
  • Mayeen Uddin Khandaker (Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University) ;
  • Mahmoud R. Khattab (Nuclear Materials Authority (NMA))
  • 투고 : 2024.02.19
  • 심사 : 2024.08.14
  • 발행 : 2024.11.25

초록

The present study employed statistical methods to evaluate the possible radiological hazards linked to granitic rocks-bearing mineralization in the ELgarra region of Egypt. The geological structures influence the occurrence of uranium mineralization in this area and are primarily associated with altered granites. Gamma-ray spectrometry was utilized to examine the quantities of 238U, 232Th, and 40K in granitic rock samples. The recorded levels of radioisotope activity concentrations in the analyzed regions ranged from 374 to 1740 Bq.kg-1 238U, with an average of 1018 Bq.kg-1. For 232Th, the range was between 71 and 163 Bq.kg-1, with an average of 119 Bq.kg-1. Lastly, for 40K, the range was 756-1789 Bq.kg-1, with an average of 1212 Bq.kg-1. The detected levels of 238U, 232Th, and 40K in the examined rock samples were observed to exceed the permissible limits of 35, 45, and 412 Bq.kg-1, respectively. The primary radiological risks linked to these granitic rocks were attributed to the gamma rays released by the radioactive elements. Estimations of the radiological hazards in the granitic rocks were made, and statistical approaches were utilized to demonstrate the associations among radionuclides and radiological factors. The assessment confirmed that uranium, potassium, and their respective minerals in the granitic rocks were the key factors contributing to the radiological risks. As a result, the study determined that the granite rocks found in the study area needed precautions to be taken due to their high levels of radioactivity.

키워드

과제정보

This work is funded by the Researchers Supporting Project number (RSP2024R455), King Saud University, Riyadh, Saudi Arabia.

참고문헌

  1. T. Taboada, A. Martinezcortizas, C. Garcia, E. Garciarodeja, Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain, Sci. Total Environ. 356 (2006) 192-206, https://doi.org/10.1016/j.scitotenv.2005.03.030.
  2. I.E. El Aassy, A.A. Nada, M.M. El Galy, M.G. El Feky, T.M. Abd El Maksoud, S. M. Talaat, E.M. Ibrahim, Behavior and environmental impacts of radionuclides during the hydrometallurgy of calcareous and argillaceous rocks, southwestern Sinai, Egypt, Appl. Radiat. Isot. 70 (2012) 1024-1033, https://doi.org/10.1016/j.apradiso.2012.03.018.
  3. A. Abbasi, Radiation risk assessment of coastal biota from a quasi-Fukushima hypothetical accident in the Mediterranean Sea, Mar. Pollut. Bull. 194 (2023) 115363, https://doi.org/10.1016/j.marpolbul.2023.115363.
  4. S. Sivakumar, A. Chandrasekaran, G. Senthilkumar, M. Suresh Gandhi, R. Ravisankar, Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach, Iran J Sci Technol Trans A Sci 42 (2018) 601-614, https://doi.org/10.1007/s40995-017-0184-2.
  5. A. Abbasi, Natural radiation of chemical fertilisers and radiological impact on agriculture soil, J. Radioanal. Nucl. Chem. 331 (2022) 4111-4118, https://doi.org/10.1007/s10967-022-08470-3.
  6. A. Abbasi, Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran, Radiat. Protect. Dosim. 155 (2013) 335-342, https://doi.org/10.1093/rpd/nct003.
  7. M. Tzortzis, H. Tsertos, S. Christofides, G. Christodoulides, Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks, Radiat. Meas. 37 (2003) 221-229, https://doi.org/10.1016/S1350-4487(03)00028-3.
  8. A.E. Omar, M.A.H. Sakr, S.A. Taalab, A.-B.A. Bakhit, M. Pugliese, G. La Verde, M. Y. Hanfi, Geotechnical and environmental radioactivity investigations at Al Sadis Min Uktober city, Cairo municipality (Egypt), for the high-speed railway construction, Appl. Radiat. Isot. 193 (2023) 110664, https://doi.org/10.1016/j.apradiso.2023.110664.
  9. Y. Orgun, N. Altinsoy, A.H. Gultekin, G. Karahan, N. Celebi, Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey, Appl. Radiat. Isot. 63 (2005) 267-275, https://doi.org/10.1016/j.apradiso.2005.03.008.
  10. S.A. Taalab, M. Al Meshari, Y. Alzamil, A. Abanomy, A.R. Alyahyawi, W. H. Mohamed, A. El-Taher, Radiological and ecological hazards evaluation of episyenite used as building materials, J. Radioanal. Nucl. Chem. 332 (2023) 2057-2075. https://doi.org/10.1007/s10967-023-08890-9.
  11. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J.P. Prakash, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu , India with statistical approach, Mar. Pollut. Bull. (2015), https://doi.org/10.1016/j.marpolbul.2015.05.058.
  12. S.A. Taalab, M. Al Meshari, Y. Alzamil, A. Abanomy, A.R. Alyahyawi, W. H. Mohamed, A. El-Taher, Radiological and ecological hazards evaluation of episyenite used as building materials, J. Radioanal. Nucl. Chem. 332 (2023) 2057-2075, https://doi.org/10.1007/s10967-023-08890-9.
  13. A. Abbasi, M. Algethami, O. Bawazeer, H.M.H. Zakaly, Distribution of natural and anthropogenic radionuclides and associated radiation indices in the Southwestern coastline of Caspian Sea, Mar. Pollut. Bull. 178 (2022) 113593, https://doi.org/10.1016/j.marpolbul.2022.113593.
  14. UNSCEAR, Exposures from natural radiation sources (annex B), sources and effects of ionizing radiation, 84-141, https://doi.org/10.1097/00004032-199907000-00007, 2000.
  15. DeifA. Abu, Geology of Uranium Mineralization in El-Missikat Area. Eastern Desert, Al-Azhar, Egypt, 1985.
  16. H.H. Abd El-Naby, Genesis of secondary uranium minerals associated with jasperoid veins, El Erediya area, Eastern Desert, Egypt, Miner. Deposits 43 (2008) 933-944, https://doi.org/10.1007/s00126-007-0171-1.
  17. I. Guagliardi, N. Rovella, C. Apollaro, A. Bloise, R. De Rosa, F. Scarciglia, G. Buttafuoco, Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy), Chemosphere 150 (2016) 97-108, https://doi.org/10.1016/j.chemosphere.2016.02.011.
  18. A.A. Ammar, Application of Aerial Radiometry of the Geology of Wadi El-Gidami Area. Eastern Desert, Cairo University, Giza, Egypt, 1973. Unpublished Ph. D. Thesis.
  19. R.J. Stern, Arc assembly and continental collision in the neoproterozoic East African orogen: implications for the consolidation of gondwanaland, Annu. Rev. Earth Planet Sci. 22 (1994) 319-351, https://doi.org/10.1146/annurev.ea.22.050194.001535.
  20. F.S. Bakhit, Geology and Radioactive Mineralization of Gebel El Missikat, Eastern Desert, Ein Shams University, Egypt, 1978. Ph.D. Thesis.
  21. I. m Abu el-leil ali, A.S. Tolba, H.A.M. Awad, A.V. Nastavkin, S.A. Omar, M.G. El-Feky, Geological and Geochemical Studies on El-Missikat Granites, Central Eastern Desert, Egypt, NEWS of the Ural State Mining University, 2020, pp. 7-18, https://doi.org/10.21440/2307-2091-2020-4-7-18.
  22. S. Arunima, R. Lekshmi, P.J. Jojo, K. Mayeen Uddin, A study on leaching of primordial radionuclides 232Th and 40K to water bodies, Radiat. Phys. Chem. 188 (2021) 109658, https://doi.org/10.1016/j.radphyschem.2021.109658.
  23. U.-K. Schkade, A. Heckel, H. Wershofen, Gamma Spectrometric Determination of the Activities of Natural Radionuclides γ-SPEKT/NATRAD, 2018.
  24. M. Iqbal, M. Tufail, S.M. Mirza, Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer, J. Environ. Radioact. 51 (2000) 255-265, https://doi.org/10.1016/S0265-931X(00)00077-1.
  25. MdJ. Abedin, MdR. Karim, S. Hossain, N. Deb, M. Kamal, MdH.A. Miah, M. U. Khandaker, Spatial distribution of radionuclides in agricultural soil in the vicinity of a coal-fired brick kiln, Arabian J. Geosci. 12 (2019) 236, https://doi.org/10.1007/s12517-019-4355-7.
  26. IAEA, Measurement of Radionuclides in Food and the Environment-Technical Reports, 1983. Vienna.
  27. A. Papadopoulos, G. Christofides, A. Koroneos, L. Papadopoulou, C. Papastefanou, S. Stoulos, Natural radioactivity and radiation index of the major plutonic bodies in Greece, J. Environ. Radioact. 124 (2013) 227-238, https://doi.org/10.1016/j.jenvrad.2013.06.002.
  28. International Atomic Energy Agency, Nuclear Fuel Cycle and Materials Section., Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data, International Atomic Energy Agency, 2003.
  29. M. Hasan, A. Hossain Chaity, A. Haydar, I. Ali, M. Uddin Khandaker, Elevated concentrations of terrestrial radionuclides in sand: an essential raw material used in Bangladeshi dwellings, Indoor Built Environ. 30 (2021) 1051-1061, https://doi.org/10.1177/1420326X20924835.
  30. H.K. Shuaibu, M.U. Khandaker, T. Alrefae, D.A. Bradley, Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia, Mar. Pollut. Bull. 119 (2017) 423-428, https://doi.org/10.1016/j.marpolbul.2017.03.026.
  31. A. Abbasi, S.F. Mirekhtiary, Risk assessment due to various terrestrial radionuclides concentrations scenarios, Int. J. Radiat. Biol. 95 (2019) 179-185, https://doi.org/10.1080/09553002.2019.1539881.
  32. A. Abbasi, A. Kurnaz, S, . Turhan, F. Mirekhtiary, Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus, J. Radioanal. Nucl. Chem. 324 (2020) 203-210, https://doi.org/10.1007/s10967-020-07069-w.
  33. D.I. Zaki, N. Shawky, E.M. El-Sheikh, F.Y. Ahmed, M.E. Ibrahim, Recovery of some valuable elements from lamprophyre dykes in the Abu Rusheid area, Southeastern Desert, Egypt, Chin. J. Geochem. 31 (2012) 64-73, https://doi.org/10.1007/s11631-012-0550-x.
  34. S.P. Clark, Z.E. Peterman, K.S. Heier, Section 24: abundances of uranium, thorium, and potassium, 521-542, https://doi.org/10.1130/MEM97-p521, 1966.
  35. M.F. Raslan, M.G. El-Feky, Radioactivity and mineralogy of the altered granites of the Wadi ghadir shear zone, south Eastern Desert, Egypt, Chin. J. Geochem. 31 (2012) 30-40, https://doi.org/10.1007/s11631-012-0546-6.
  36. A.G. Darnley, Hot granites : some general remarks. https://doi.org/10.4095/111365, 1982.
  37. M.G. El-Fekya, H.S. Mohammed, A.M. El-Shabasy, M.R. Ahmed, Y.K. Abdel-Monem, H.I. Mira, Mobilisation of radionuclides during uranium and gold processing of granitic rock at El-Missikate area, central Eastern Desert, Egypt, Int. J. Environ. Anal. Chem. (2021) 1-14, https://doi.org/10.1080/03067319.2021.1925262, 00.
  38. M.R. Khattab, W.H. Mohamed, S.A. Shetaia, M.S. Ahmed, S.A. Taalab, D. A. Saadawi, A.K. Sakr, M.U. Khandaker, A.Sh.M. Elshoukrofy, M.Y. Hanfi, Radiological, environmental, and structural investigations of Wadi El Markh granitic rocks, southeastern desert, Egypt, Nuclear Engineering and Technology (2024). https://doi.org/10.1016/j.net.2024.06.015.
  39. S.A. Taalab, A.M. Abdel-Rahman, H. El-Awny, H.A. Awad, H.M.H. Zakaly, W. Fahmy, A. Ene, Petrogenesis and Tectonic Evolution of Kab Amiri Ophiolites and Island-Arc Assemblages, Central Eastern Desert, Egypt: Petrological and Geochemical Constraints, Minerals 13 (2023) 528. https://doi.org/10.3390/min13040528.
  40. M.R. Khattab, Using of uranium and thorium isotopes in age framework determination for different stages of alterations and mineralizations in Missikat altered granites, Central Eastern Desert, Egypt, Phys. Chem. Earth, Parts A/B/C 128 (2022) 103204, https://doi.org/10.1016/j.pce.2022.103204.
  41. A.M. El Mezayen, E.K. Abu Zeid, W.S. Hosny, M.G. El-Feky, S.M. Omar, S. A. Taalab, Geochemistry, mineralogy, and radioactivity of the Abu Furad area, central Eastern Desert, Egypt, Acta Geochimica 38 (2019) 307-326. https://doi.org/10.1007/s11631-018-0302-7.
  42. M.A.M. Uosif, L.M. Abdel-salam, An assessment of the external radiological impact in granites and pegmatite in central eastern desert in Egypt with elevated natural radioactivity, Radiat. Protect. Dosim. 147 (2011) 467-473, https://doi.org/10.1093/rpd/ncq448.
  43. J.H. Al-Zahrani, Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia, J Radiat Res Appl Sci 10 (2017) 241-245, https://doi.org/10.1016/j.jrras.2017.05.001.
  44. UNSCEAR, SOURCES and EFFECTS of IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation, 2010.
  45. UNSCEAR, Sources and Effects of Ionizing Radiation - Exposures of the Public and Workers from Various Sources of Radiation - UNSCEAR 2008 Report, 2010. New York, http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf.
  46. R.M. Amin, Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites, Environ. Earth Sci. 67 (2012) 771-775, https://doi.org/10.1007/s12665-012-1538-x.
  47. C. Sabbarese, F. Ambrosino, A.D. Onofrio, V. Roca, Radiological characterization of natural building materials from the Campania region (Southern Italy), Construct. Build. Mater. (2020) 121087, https://doi.org/10.1016/j.conbuildmat.2020.121087.
  48. USEPA, EPA Radiogenic Cancer Risk Models and Projections for the U . S . Population, 2011.
  49. M.Y. Hanfi, B.M. Emad, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, Natural radioactivity in the prospecting tunnel in Egypt: dose rate and risk assessment, Radiat. Phys. Chem. 187 (2021) 109555, https://doi.org/10.1016/j.radphyschem.2021.109555.
  50. A.A. Qureshi, S. Tariq, U. Kamal, S. Manzoor, C. Calligaris, A. Waheed, ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan, J Radiat Res Appl Sci 7 (2014) 438-447, https://doi.org/10.1016/j.jrras.2014.07.008.
  51. M.Y. Hanfi, A.E. Abdel Gawad, K.G. Ali, A. Abu-Donia, K.G. Alsafi, M.A. Khafaji, S. K. Albahiti, M.S. Alqahtani, M. Khalil, A.A. Abdel Wahed, Environmental risk assessment associated with acidic volcanics in Egypt, Appl. Radiat. Isot. 188 (2022) 110413, https://doi.org/10.1016/j.apradiso.2022.110413.
  52. M. Awad, A.M. El Mezayen, A. El Azab, S.M. Alfi, H.H. Ali, M.Y. Hanfi, Radioactive risk assessment of beach sand along the coastline of Mediterranean Sea at El-Arish area, North Sinai, Egypt, Mar Pollut Bull 177 (2022) 113494. https://doi.org/10.1016/j.marpolbul.2022.113494.
  53. M.Y.M. Hanfi, M.S. Masoud, M.I. Sayyed, M.U. Khandaker, M.R.I. Faruque, D. A. Bradley, M.Y.A. Mostafa, The presence of radioactive heavy minerals in prospecting trenches and concomitant occupational exposure, PLoS One 16 (2021) e0249329. https://doi.org/10.1371/journal.pone.0249329.
  54. S.A. Taalab, A.M. Ismail, W.M. El Maadawy, K. Abdelrahman, M.U. Khandaker, A. K. Sakr, M.Y. Hanfi, Natural radioactivity, mineralogy and hazard assessment of syenogranites (ornamental stones) using a statistical approach, Nuclear Engineering and Technology (2024). https://doi.org/10.1016/j.net.2024.05.017.