Acknowledgement
This research was funded by the Natural Science Foundation of China (No. U21B2059). This support is gratefully acknowledged.
References
- J. Sugimoto, Y. Murao, Experimental study of effect of initial clad temperature on reflood phenomena during PWR-LOCA, J. Nucl. Sci. Technol. 20 (8) (1983) 645-657. https://doi.org/10.1080/18811248.1983.9733446
- R.P. Martin, A. Petruzzi, Progress in international best estimate plus uncertainty analysis methodologies, Nucl. Eng. Des. 374 (2021) 111033.
- H. Luo, Quantified PIRT and Uncertainty Quantification for Computer Code Validation, 2012.
- W. Jaeger, V.H.S. Espinoza, Uncertainty and sensitivity study in the frame of TRACE validation for reflood experiment, Nucl. Technol. 184 (3) (2017) 333-350.
- Q. Xiong, et al., Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs, Reliab. Eng. Syst. Saf. 221 (2022) 108337.
- J.M. Yoo, et al., Analysis of the effect of liquid droplet models on the reflood heat transfer using the CUPID code, Nucl. Eng. Des. 354 (2019) 110148.
- Q. Xiong, et al., Optimization of sensitivity analysis in best estimate plus uncertainty and the application to large break LOCA of a three-loop pressurized water reactor, Prog. Nucl. Energy 126 (2020) 103396.
- G. Perret, et al., Global sensitivity analysis and bayesian calibration on a series of reflood experiments with varying boundary conditions, Nucl. Technol. 208 (4) (2021) 711-722. https://doi.org/10.1080/00295450.2021.1936879
- X. Wu, et al., A comprehensive survey of inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes, Nucl. Eng. Des. 384 (2021) 111460.
- J. Yang, et al., Best estimate plus uncertainty analysis of a large break LOCA on generation III reactor with RELAP5, Ann. Nucl. Energy. 127 (2019) 326-340. https://doi.org/10.1016/j.anucene.2018.12.019
- M. Ionescu-Bujor, D.G. Cacuci, A comparative review of sensitivity and uncertainty analysis of large-scale systems-I: deterministic methods, Nucl. Sci. Eng. 147 (2004) 189-203. https://doi.org/10.13182/NSE03-105CR
- D.G. Cacuci, M. Ionescu-Bujor, A comparative review of sensitivity and uncertainty analysis of large-scale systems-II: statistical methods, Nucl. Sci. Eng. 147 (2004) 204-217. https://doi.org/10.13182/04-54CR
- D. Li, et al., Comparison of local and global sensitivity analysis methods and application to thermal hydraulic phenomena, Prog. Nucl. Energy 158 (2023) 104612.
- Q. Xiong, et al., Global sensitivity analysis of LOFT large break loss of coolant accident with optimized moment-independent method, Ann. Nucl. Energy 139 (2020) 107289.
- C.S. Brown, H. Zhang, Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS, Ann. Nucl. Energy 95 (2016) 188-201. https://doi.org/10.1016/j.anucene.2016.05.016
- V. Nicoulaud-Gouin, et al., Sensitivity analysis in a radiological impact assessment of a nuclear power plant discharge. A comparison of the Morris, Spearman and Sobol' approaches, J. Environ. Radioact. 242 (2022) 106770.
- R.A. Shaw, et al., Phenomena Identification and Ranking Tables (PIRT) for LBLOCA, 1987.
- L. Chen, et al., Development of multiphase subchannel code with new numerical method in COSINE code package, Ann. Nucl. Energy 191 (2023) 109902.
- W.R. Zwick, A Comparison of Five Rules for Determining the Number of Components in Complex Patterns, 1983.
- W.K. Hardle, L. Simar, Applied Multivariate Statistical Analysis, 2003.
- E.C. Fieller, et al., Tests for rank correlation coefficients. I, Biometrika 44 (1957) 470-481. https://doi.org/10.1093/biomet/44.3-4.470
- C. Spearman, The proof and measurement of association between two things. By C. Spearman, 1904, Am. J. Psychol. 100 (3-4) (1987) 441-471. https://doi.org/10.2307/1422689
- T.W. Anderson, D. Darling, A test of goodness of fit, J. Am. Stat. Assoc. 49 (1954) 765-769. https://doi.org/10.1080/01621459.1954.10501232
- T.W. Anderson, D. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Stat. 23 (1952) 193-212. https://doi.org/10.1214/aoms/1177729437
- P. Weiss, et al., UPTF experiment: a synopsis of full scale test results, Nucl. Eng. Des. 122 (1990) 219-234. https://doi.org/10.1016/0029-5493(90)90208-F
- P.S. Damerell, J.W. Simons, Reactor Safety Issues Resolved by the 2D/3D Program Nuclear Regulatory Commission, 1993.
- X. Li, et al., Analysis of RELAP5 prediction of countercurrent flow limitation in downcomer at upper plenum test facility, Prog. Nucl. Energy 158 (2023) 104608.
- P. Ihle, K. Rust, Feba - flooding experiments with blocked arrays, Evaluation report, 1984. Test series V-VIII (1984) KFK-3659.
- D. Wicaksono, et al., Global sensitivity analysis of transient code output applied to a reflood experiment model using the TRACE code, Nucl. Sci. Eng. 184 (3) (2017) 400-429. https://doi.org/10.13182/NSE16-37
- A. Kovtonyuk, et al., PREMIUM BenchmarkPhase II: Identification of Influential Input Parameters, 2012. Pisa, Italy.
- Z.J.A. Belmonte, et al., The acceptance of nuclear energy as an alternative source of energy among Generation Z in the Philippines: an extended theory of planned behavior approach, Nucl. Eng. Technol. 55 (8) (2023) 3054-3070. https://doi.org/10.1016/j.net.2023.04.047
- M.S. Islam, et al., An empirical study of the risk-benefit perceptions between the nuclear and non-nuclear groups towards the nuclear power plant in Bangladesh, Nucl. Eng. Technol. 55 (12) (2023) 4617-4627. https://doi.org/10.1016/j.net.2023.07.047
- S.-W. Kim, et al., PWSCC growth rate model of alloy 690 for head penetration nozzles of Korean PWRs, Nucl. Eng. Technol. 51 (4) (2019) 1060-1068. https://doi.org/10.1016/j.net.2019.01.010