과제정보
This work was supported by the National Natural Science Foundation of China (52172043).
참고문헌
- D.A. Petti, J. Buongiorno, J.T. Maki, et al., Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance, Nucl. Eng. Des. 222 (2-3) (2003) 281-297, https://doi.org/10.1016/s0029-5493(03)00033-5.
- H. Nickel, H. Nabielek, G. Pott, et al., Long time experience with the development of HTR fuel elements in Germany, Nucl. Eng. Des. 217 (1-2) (2002) 141-151, https://doi.org/10.1016/s0029-5493(02)00128-0.
- Z.Y. Zhang, Y.J. Dong, F. Li, et al., The Shandong Shidao Bay 200 MW e High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation, Engineering 2 (1) (2016) 112-118, https://doi.org/10.1016/j.Eng.2016.01.020.
- H. Hrovat, K.K. Nickel, About development of a matrix - material for production of pressed fuel elements for high-temperature reactors, Reports of the nuclear research facility - Nr (1973) 969.
- E. Hoinkis, E. Robens, Surface area and porosity of unmodified graphitic matrices A3-27 and A3-3 (1950) and oxidized matrix A3-3 (1950), Carbon 27 (1989) 157-168, https://doi.org/10.1016/0008-6223(89)90169-3.
- H.S. Zhao, T.X. Liang, J. Zhang, et al., Manufacture and characteristics of spherical fuel elements for the HTR-10, Nucl. Eng. Des. 236 (5-6) (2006) 643-647, https://doi.org/10.1016/j.nucengdes.2005.10.023.
- Y.-W. Lee, S. Yeo, E.-S. Kim, et al., On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation, Transactions of the Korean Nuclear Society Autumn Meeting, Korea (2016).
- E. Lopez-Honorato, J. Boshoven, P.J. Meadows, et al., Characterisation of the anisotropy of pyrolytic carbon coatings and the graphite matrix in fuel compacts by two modulator generalised ellipsometry and selected area electron diffraction, Carbon 50 (2) (2012) 680-688, https://doi.org/10.1016/j.carbon.2011.09.027.
- X.W. Zhou, Z.M. Lu, X.N. Li, et al., The oxidation behavior of A3-3 matrix graphite, N. Carbon Mater. 31 (2) (2016) 182-187, https://doi.org/10.1016/s1872-5805(16)60010-0.
- K. Shen, J. Su, H. Zhou, et al., Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR, Nucl. Eng. Des. 293 (2015) 395-402, https://doi.org/10.1016/j.nucengdes.2015.07.051.
- K. Shen, W. Peng, B. Liu, et al., Characterization of graphite dust produced by pneumatic lift, Nucl. Eng. Des. 305 (2016) 104-109, https://doi.org/10.1016/j.nucengdes.2016.04.036.
- A.W. Mehner, W. Heit, K. Rollig, et al., Spherical fuel elements for advanced HTR manufacture and qualification by irradiation testing, J. Nucl. Mater. 171 (1) (1990) 9-18, https://doi.org/10.1016/0022-3115(90)90341-j.
- P.J. Pappano, T.D. Burchell, J.D. Hunn, et al., A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP), J. Nucl. Mater. 381 (1-2) (2008) 25-38, https://doi.org/10.1016/j.jnucmat.2008.07.032.
- R.E. Schulze, H.A. Schulze, W. Rind, Graphitische Matrixwerkstoffe Fuer Kugelfoermige HTR-Brennelemente, 1981. Juel-1752.
- X.W. Zhou, Z.M. Lu, J. Zhang, Preparation of spherical fuel elements for HTR-PM in INET, Nucl. Eng. Des. 263 (2013) 456-461, https://doi.org/10.1016/j.nucengdes.2013.07.001.
- X.W. Zhou, J. Zhang, Z.M. Lu, et al., Study on the carbonization process in the fabrication of pebble fuel elements, Nucl. Eng. Des. 271 (2014) 149-153, https://doi.org/10.1016/j.nucengdes.2013.11.023.
- Z. Lu, X. Gao, W. Zhang, et al., Effect of soft-mould pressing method on anisotropy of the graphitic matrix spheres: Dry-bag isostatic vs. Quasi-isostatic, J. Nucl. Mater. 570 (2022), https://doi.org/10.1016/j.jnucmat.2022.153950.
- X. Zhou, Y. Yang, J. Ma, et al., Effects of purification on the properties and microstructures of natural flake and artificial graphite powders, Nucl. Eng. Des. (2020) 360, https://doi.org/10.1016/j.nucengdes.2020.110527.
- K. Shen, Z.H. Huang, K.X. Hu, et al., Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation, Carbon 90 (2015) 197-206, https://doi.org/10.1016/j.carbon.2015.03.068.
- K. Shen, X.T. Chen, W.C. Shen, et al., Thermal and gas purification of natural graphite for nuclear applications, Carbon 173 (2021) 769-781, https://doi.org/10.1016/j.carbon.2020.11.062.
- C. Tang, Y. Tang, J. Zhu, et al., Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor, Nucl. Eng. Des. 218 (1-3) (2002) 91-102, https://doi.org/10.1016/s0029-5493(02)00201-7.
- X.W. Zhou, K.H. Zhang, Y. Yang, et al., Properties and microstructures of a matrix graphite for fuel elements of pebble-bed reactors after hightemperature purification at different temperatures, N. Carbon Mater. 36 (5) (2021) 987-993, https://doi.org/10.1016/s1872-5805(21)60048-3.
- N. Iwashita, C.R. Park, H. Fujimoto, et al., Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon 42 (4) (2004) 701-714, https://doi.org/10.1016/j.carbon.2004.02.008.
- K. Shen, K. Xu, S.Y. Yu, et al., The optical texture of PGA, Gilsocarbon, NBG-18, and IG-110 nuclear graphite, J. Nucl. Mater. 552 (2021), https://doi.org/10.1016/j.jnucmat.2021.153013.
- R.M. Paul, J.D. Arregui-Mena, C.I. Contescu, et al., Effect of microstructure and temperature on nuclear graphite oxidation using the 3D Random Pore Model, Carbon 191 (2022) 132-145, https://doi.org/10.1016/j.carbon.2022.01.041.
- M. Jiang, A. El-Turke, G. Lolov, et al., Multiple length-scale microstructural characterisation of four grades of fine-grained graphite, J. Nucl. Mater. 550 (2021), https://doi.org/10.1016/j.jnucmat.2021.152876.
- ASTM, ASTM E1461-2013 Standard Test Method for Thermal Diffusivity by the Flash Method, 2013.
- ASTM, ASTM E831-19 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis, 2019.
- ASTM, ASTM D7219-08 Standard Specification for Isotropic and Near-Isotropic Nuclear Graphites, 2008.
- K. Shen, X.L. Cao, Z.H. Huang, et al., Microstructure and thermal expansion behavior of natural microcrystalline graphite, Carbon 177 (2021) 90-96, https://doi.org/10.1016/j.carbon.2021.02.055.
- Z. He, H. Zhao, J. Song, et al., Densification of matrix graphite for spherical fuel elements used in molten salt reactor via addition of green pitch coke, Nucl. Eng. Technol. (2021), https://doi.org/10.1016/j.net.2021.09.034.
- X. Zhou, Z. Lu, J. Zhang, et al., Study on the comprehensive properties and microstructures of A3-3 matrix graphite related to the high temperature purification treatment, Science and Technology of Nuclear Installations 1-10 (2018) (2018), https://doi.org/10.1155/2018/6084747.