DOI QR코드

DOI QR Code

Radiological hazard assessment of soil from Kasik oil refinery, Nineveh, Iraq

  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • Zainab Mowafaq Maria (Department of Physics, College of Science, University of Mosul) ;
  • Zakariya Adel Hussein (Department of Physics, Faculty of Science and Health, Koya University) ;
  • Laith Ahmed Najam (Department of Physics, College of Science, University of Mosul) ;
  • Berivan F. Namq (Department of Basic Science, College of Dentistry, University of Kirkuk) ;
  • Taha Yaseen Wais (Department of Physics, College of Science, University of Mosul) ;
  • Mostafa Yuness Abdelfatah Mostafa (Department of Physics, Faculty of Science, Minia University) ;
  • Howaida Mansour (Department of Physics, Faculty of Women for Arts, Science and Education, Ain Shams University)
  • Received : 2024.05.12
  • Accepted : 2024.06.24
  • Published : 2024.11.25

Abstract

This study explored soil samples in a depth about 10-15 cm, 20 Soil samples were collected systematically from various locations to ensure a comprehensive assessment of the site within Kasik oil refinery, Nineveh Governorate, Iraq, whereby the determination of three natural radionuclides' specific activities was carried out via A p-type coaxial HPGe γ-ray spectrometer, manufactured by CANBERRA, USA. Natural radioactivity in soil is a significant factor for assessing environmental radiation exposure and potential health risks. The 226Ra, 232Th, and 40K radionuclides' mean specific activities in the soil samples were in the 13.10-33.43 Bq/kg, 10.58-22.76 Bq/kg, and 104.90-442.16 Bq/kg ranges, respectively, with overall means of 21.44 Bq/kg, 15.96 Bq/kg, and 255.50 Bq/kg, which are within the worldwide mean levels. The mean radium-equivalent activity (Raeq) was 63.94 Bq/kg, and thus below the 370 Bq/kg international limit. All of the samples' representative level index (Iγ) and internal and external hazard indices (Hin and Hex) were below the limit of unity, indicating low radiation hazards. The absorbed dose rate resulting from the three primordial radionuclides was in the 19.92-41.46 nGy/h range (mean: 30.20 nGy/h), with an annual effective dose of 0.04 mSv/y. The mean excess lifetime risk of cancer was found to be 0.15 × 10-3, and thus under the 0.29 × 10-3 world average. The study's results indicate that the natural radionuclides' measured specific activities in the soil samples are below the world recommended values, suggesting that the investigated area is safe in terms of radiological health risks.

Keywords

References

  1. A.S. Alaamer, Assessment of human exposures to natural sources of radiation in soil of riyadh, Saudi Arabia, Turk. J. Eng. Environ. Sci. 32 (2008) 229-234.
  2. UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, UNSCEAR 2000 Report, 2000.
  3. M.Y. Hanfi, M.S. Masoud, F. Ambrosino, M.Y.A. Mostafa, Natural radiological characterization at the Gabal El Seila region (Egypt), Appl. Radiat. Isot. 173 (2021) 109705, https://doi.org/10.1016/j.apradiso.2021.109705.
  4. A.F. Tawfic, H.M.H. Zakaly, H.A. Awad, H.R. Tantawy, A. Abbasi, N.S. Abed, M. Mostafa, Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt, J. Radioanal. Nucl. Chem. 327 (2021) 643-652, https://doi.org/10.1007/s10967-020-07554-2.
  5. H.M.H. Zakaly, M.A.M. Uosif, S.A.M. Issa, H.O. Tekin, H. Madkour, M. Tammam, A. El-Taher, G.A. Alharshan, M.Y.A. Mostafa, An extended assessment of natural radioactivity in the sediments of the mid-region of the Egyptian Red Sea coast, Mar. Pollut. Bull. 171 (2021) 112658.
  6. K.A. Kabir, S.M.A. Islam, M. Rahman, Distribution of radionuclides in surface soil and bottom sediment in the district of Jessore, Bangladesh and evaluation of radiation hazard, J. Bangladesh Acad. Sci. 33 (2009) 117-130.
  7. F. Alshahri, A. El-Taher, Assessment of heavy and trace metals in surface soil nearby an oil refinery, Saudi Arabia, using geoaccumulation and pollution indices, Arch. Environ. Contam. Toxicol. 75 (2018) 390-401, https://doi.org/10.1007/s00244-018-0531-0.
  8. A.O. Ayobami, An assessment of trace metal pollution indicators in soils around oil well clusters, Petrol. Res. 7 (2022) 275-285, https://doi.org/10.1016/j.ptlrs.2021.09.001.
  9. M.M.M. Ali, H. Zhao, Z. Li, N.N.M. Maglas, Concentrations of TENORMs in the petroleum industry and their environmental and health effects, RSC Adv. 9 (2019) 39201-39229, https://doi.org/10.1039/c9ra06086c.
  10. H. Barros, J.M. Abril, E.D. Greaves, Radioactivity Concentration and Heavy Metal Content in Fuel Oil and Oil-Ashes in Venezuela, 40, 2005, pp. 183-189, https://doi.org/10.1051/radiopro.
  11. A.M. Freije, Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: review, J. Assoc. Arab Univ. Basic Appl. Sci. 17 (2015) 90-100, https://doi.org/10.1016/j.jaubas.2014.02.001.
  12. X. Fu, Z. Cui, G. Zang, Migration{,} speciation and distribution of heavy metals in an oil-polluted soil affected by crude oil extraction processes, Environ. Sci.: Process. Impacts 16 (2014) 1737-1744, https://doi.org/10.1039/C3EM00618B.
  13. I.A.E.A. Iaea, Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry, Safety Reports Series, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2004.
  14. H.A.M. Puad, M.Y.M. Noor, Behaviors of 323Th, 238U, 228Ra and 226Ra on combustion of crude oil terminal sludge, J. Environ. Radioact. 73 (2004) 289-305, https://doi.org/10.1016/j.jenvrad.2003.10.004.
  15. ECNR, Safety Guide for Experiments at European Council for Nuclear Research. Part III-Advice, Ionizing Radiation, ECNR, 1995.
  16. T.R. Ajayi, N. Torto, P. Tchokossa, A. Akinlua, Natural radioactivity and trace metals in crude oils: implication for health, Environ. Geochem. Health 31 (2009) 61-69, https://doi.org/10.1007/s10653-008-9155-z.
  17. F.S. Al-Saleh, G.A. Al-Harshan, Measurements of radiation level in petroleum products and wastes in Riyadh City Refinery, J. Environ. Radioact. 99 (2008) 1026-1031, https://doi.org/10.1016/j.jenvrad.2007.12.002.
  18. M.M.M. Ali, H. Zhao, N. Yassin, A.A. Al-Shami, W. Alquraishi, I. Alfasatleh, O. Alqudah, Multivariate statistical study of technologically enhanced naturally occurring radioactive materials and radiation hazards in crude oil and petroleum products of Ma'rib refinery, Yemen. J. Cleaner Prod. 298 (2021) 126772, https://doi.org/10.1016/j.jclepro.2021.126772.
  19. E.O. Darko, D.O. Kpeglo, E.H.K. Akaho, C. Schandorf, P.A.S. Adu, A. Faanu, E. Abankwah, H. Lawluvi, A.R. Awudu, Radiation doses and hazards from processing of crude oil at the Tema oil refinery in Ghana, Radiat. Protect. Dosim. 148 (2012) 318-328, https://doi.org/10.1093/rpd/ncr088.
  20. Z.A. Hussein, Assessment of Natural Radioactivity Levels and Radiation Hazards of Soils from Erbil Governorate , Iraqi Kurdistan, ARO-The Scientific Journal of Koya University VII, 2019, pp. 34-39, https://doi.org/10.14500/aro.10471.
  21. N.N. Jibiri, C.M. Amakom, Radiological assessment of radionuclide contents in soil waste streams from an oil production well of a petroleum development company in Warri, Niger Delta, Nigeria, Indoor Built Environ. 20 (2010) 246-252, https://doi.org/10.1177/1420326X10378806.
  22. E.O. Olalekan, F.M. Adebiyi, Measurement of radioactivity levels in oil impacted soils around petroleum products retailing stations, Petrol. Sci. Technol. 38 (2020) 53-63, https://doi.org/10.1080/10916466.2019.1656240.
  23. I.M.E.-S.A. Othman, I.H. Saleh, Z.F. Ghatass, M.A.-A. Metwally, Radiological risk assessment in A type of complex petroleum refinery in Egypt, Arab J. Nuclear Sci. Appl. 51 (2018) 31-43, https://doi.org/10.21608/ajnsa.2018.2581.1034.
  24. P. Tsamos, S. Stefanou, F. Noli, Assessment of distribution of heavy metals and radionuclides in soil and plants nearby an oil refinery in northern Greece, Case Stud. Chem. Environ. Eng. 9 (2024) 100593, https://doi.org/10.1016/j.cscee.2023.100593.
  25. T.Y. Wais, L.A. Najam, Activity concentration of natural radionuclides in sediment of tigris river in the city of Mosul , Iraq, J. Phys. Conf. 1999 (2021) 012064, https://doi.org/10.1088/1742-6596/1999/1/012064.
  26. A. Faanu, G. Emi-Reynolds, E.O. Darko, R. Awudu, E.T. Glover, O.K. Adukpo, F. Otoo, D.O. Kpeglo, H. Lawluvi, Calibration and performance testing of sodium iodide, NaI (Tl), detector at the food and environmental laboratory of the radiation protection institute of the Ghana atomic energy commission, West Af. J. App. Ecol. 19 (1) (2012) 39-52.
  27. L.A. Najam, I. Ahmed, R.B. Alkhayat, T.Y. Wais, Transfer factors of 226Ra, 232Th and 40K from fertilised soil to different types of field crops in Tikrit city, Iraq, Int. J. Nucl. Energy Sci. Technol. 16 (2022) 31-43, https://doi.org/10.1504/IJNEST.2022.128993.
  28. Ali H. Taqi, B.F. Namq, Radioactivity distribution in soil samples of the Baba Gurgur dome of Kirkuk oil field in Iraq, Int. J. Environ. Analyt. Chem. Online (2022) 1-19, https://doi.org/10.1080/03067319.2022.2077104.
  29. Ali H. Taqi, B.F. Namq, Radioactivity and radionuclide distribution in Jabel Bawr oil site of Kirkuk-Iraq, Arab J. Nuclear Sci. Appl. 55 (2022) 113-124, https://doi.org/10.21608/ajnsa.2021.93425.1508.
  30. M.C. Srilatha, D.R. Rangaswamy, J. Sannappa, Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India, J. Radioanal. Nucl. Chem. 303 (2015) 993-1003, https://doi.org/10.1007/s10967-014-3584-1.
  31. J. Beretka, P.J. Mathew, Natural radioactivity of australian building materials, industrial wastes and by-products, Health Phys. 48 (1985) 87-95, https://doi.org/10.1097/00004032-198501000-00007.
  32. V. Ramasamy, M. Sundarrajan, K. Paramasivam, V. Meenakshisundaram, G. Suresh, Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India, Appl. Radiat. Isot. 73 (2013) 21-31, https://doi.org/10.1016/j.apradiso.2012.11.014.
  33. K. Mamont-Ciesla, B. Gwiazdowski, M. Biernacka, A. Zak, Radioactivity of building materials in Poland, in: G. Vohra, K.C. Pillai, S. Sadavisan (Eds.), Natural Radiation Environment, Halsted Press, New York, 1982.
  34. ICRP, The 2007 recommendations of the international commission on radiological protection. ICRP publication 103, Ann. ICRP 37 (2007) 1-332, https://doi.org/10.1016/j.icrp.2007.10.003.
  35. V. Vineethkumar, R. Akhil, K.P. Shimod, V. Prakash, Geospatial analysis of the source of monazite deposits and the dynamics of natural radionuclides in the selected coastal environs of Kerala, south west coast of India, J. Radioanal. Nucl. Chem. 326 (2020) 983-996, https://doi.org/10.1007/s10967-020-07418-9.
  36. C.V. Vishnu, A. Joseph, Determination of natural radioactivity, hazard parameters and physico-chemical properties of soils from Palakkad-Thrissur district, Kerala, India, Mater. Today: Proc. 55 (2022) 127-134, https://doi.org/10.1016/j.matpr.2021.12.548.
  37. R. Ravisankar, J. Chandramohan, A. Chandrasekaran, J. Prince Prakash Jebakumar, I. Vijayalakshmi, P. Vijayagopal, B. Venkatraman, Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach, Mar. Pollut. Bull. 97 (2015) 419-430, https://doi.org/10.1016/j.marpolbul.2015.05.058.
  38. NEA-OECD, Exposure to Radiation from Natural Radio- Activity in Building Materials, 1979. Paris.
  39. E.O. Agbalagba, G.O. Avwiri, Y.E. Chad-Umoreh, γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria, J. Environ. Radioact. 109 (2012) 64-70, https://doi.org/10.1016/j.jenvrad.2011.10.012.
  40. I.H. Saleh, A.F. Hafez, N.H. Elanany, H.A. Motaweh, M.A. Naim, Radiological study on soils, foodstuff and fertilizers in the Alexandria Region, Egypt, Turk. J. Eng. Environ. Sci. 31 (2007) 9-17, https://doi.org/10.3906/tar-1201-1.
  41. K.A. Zarie, K.S. Al Mugren, Measurement of natural radioactivity and assessment of radiation hazard in soil samples from tammy area (KSA), Isot. Radiat. Res. 42 (2010) 1-9.
  42. R.D. DeLaune, G.L. Jones, C.J. Smith, Radionuclide concentrations in Louisiana soils and sediments, Health Phys. 51 (1986) 239-244.
  43. A. Lambrechts, L. Foulquier, J. Garnier-Laplace, Natural radioactivity in the aquatic components of the main French rivers, Radiat. Protect. Dosim. 45 (1992) 253-256, https://doi.org/10.1093/rpd/45.1-4.253.
  44. G. Xhixha, M. Baldoncini, I. Callegari, Assessment of naturally occurring radioactive materials (NORMs) in soils assessment of naturally occurring radioactive materials (NORMs) in soils from the Kucova oilfield , Albania, in: Latest Trends in Energy, Environment and Development Radionuclides, 2000, pp. 154-160.
  45. S. Dizman, F.K. Gorur, R. Keser, O. Gorur, The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey, Environ. Forensics 20 (2019) 211-218, https://doi.org/10.1080/15275922.2019.1629129.
  46. T.Y. Wais, F.N.M. Ali, L.A. Najam, H. Mansour, M.Y.A. Mostafa, Assessment of natural radioactivity and radiological hazards of soil collected from rabia town in nineveh governorate (North Iraq), Phys. Scripta 98 (2023) 65304, https://doi.org/10.1088/1402-4896/acd732.