DOI QR코드

DOI QR Code

Sorption of U(VI) on MX-80 bentonite, illite, shale and limestone in Na-Ca-Cl saline solutions

  • 투고 : 2024.01.31
  • 심사 : 2024.06.20
  • 발행 : 2024.11.25

초록

Uranium (U) has been identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. In this study, the sorption of U(VI) was studied in Na-Ca-Cl solutions at ionic strengths = 0.1-6 mol/kgw (m) in a CO2 free environment at pHm (molal H+ concentration where pHm = - log mH+) = 4-9 for MX-80 bentonite, illite and Queenston shale and at pHm = 5-9 for limestone. U(VI) sorption on MX-80 bentonite increased with pHm from pHm = 4 to 6, then decreased with pHm until pHm = 7, and then increased again with pHm to pHm = 9. U(VI) sorption on illite increased with pHm reaching a maximum at pHm = 7, and then decreased with further increases in pHm. The sorption behavior of U(VI) on shale was similar to that of illite, but the extent of decrease in the sorption coefficient (Rd) value with pHm was slightly more pronounced for the shale than observed for sorption on illite at pHm > 7. U(VI) sorption on limestone increased with pHm up to pHm = 8 and then seemed to be constant at pHm = 8-9. U(VI) sorption on all four solids was independent of ionic strength (0.1-6.0 m). The 2 site protolysis non-electrostatic surface complexation and cation exchange model successfully simulated the sorption of U(VI) onto MX-80 and illite, and the optimized values of surface complexation constants were estimated.

키워드

과제정보

This work was funded by the Nuclear Waste Management Organization of Canada.

참고문헌

  1. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, M. Schmidt, Mineral-water interface reactions of actinides, Chem. Rev. 113 (2013) 1016-1062, https://doi.org/10.1021/cr300370h. 
  2. J.K. Lee, M.H. Baik, J.W. Choi, M.S. Seo, Development of a web-based sorption database (KAERI-SDB) and application to the safety assessment of a radioactive waste disposal, Nucl. Eng. Des. 241 (2011) 5316-5324, https://doi.org/10.1016/j.nucengdes.2011.09.045. 
  3. National Academy of Science, A study of the isolation for geologic disposal of radioactive wastes, Waste Isolation Systems Panels, in: Board on Radioactive Waste Management, 1983. Washington DC, USA. 
  4. J. Noronha, Deep Geological Repository Conceptual Design Report, Crystalline/Sedimentary Rock Environment, Technical Report, Nuclear Waste Management Organization, May 2016. APM-REP-00440-0015 R001. 
  5. M.Y. Hobbs, S.K. Frape, O. Shouakar-Stash, L.R. Kennell, Regional Hydrogeochemistry - Southern Ontario, Technical Report, Nuclear Waste Management Organization, Toronto, Canada, 2011. NWMO DGR-TR-2011-12. 
  6. P. Vilks, T. Yang, Sorption of selected radionuclides on sedimentary rocks in saline conditions - updated sorption values, in: Technical Report, Nuclear Waste Management Organization, 2018. NWMO-TR-2018-03, Toronto, Canada. 
  7. R. Pabalan, D.R. Turner, Uranium(6+) sorption on montmorillonite: experimental and surface complexation modeling study, Aquat. Geochem. 2 (1997) 203-226.  https://doi.org/10.1007/BF00119855
  8. M.H. Bradbury, B. Baeyens, Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides, Geochem. Cosmochim. Acta 69 (2005) 875-892, https://doi.org/10.1016/j.gca.2004.07.020. 
  9. M. Majdan, S. Pikus, A. Gajowiak, A. Gladysz-Plaska, H. Krzyzanowska, J. Zuk, M. Bujacka, Characterization of uranium(VI) sorption by organobentonite, Appl. Surf. Sci. 256 (2010) 5416-5421, https://doi.org/10.1016/j.apsusc.2009.12.123. 
  10. X. Ren, S. Wang, S. Yang, J. Li, Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite, J. Radioanal. Nucl. Chem. 283 (2010) 253-259, https://doi.org/10.1007/s10967-009-0323-0. 
  11. M. Marques Fernandes, B. Baeyens, R. Dahn, A.C. Scheinost, M.H. Bradbury, U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study, Geochimiica et Cosmochimica Acta 93 (2012) 262-277, https://doi.org/10.1016/j.gca.2012.04.017. 
  12. J. Xiao, Y. Chen, W. Zhao, J. Xu, Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid, J. Mol. Liq. 188 (2013) 178-185, https://doi.org/10.1016/j.molliq.2013.10.008. 
  13. P.K. Verma, P. Pathak, M. Mohapatra, A.K. Yadav, S. Jha, D. Bhattacharyya, P. K. Mohapatra, Spectroscopic investigations on sorption of uranium onto suspended bentonite: effects of pH, ionic strength and complexing anions, Radiochim. Acta 103 (2015) 293-303, https://doi.org/10.1515/ract-2014-2309. 
  14. S. Li, X. Wang, Z. Huang, L. Du, Z. Tan, Y. Fu, X. Wang, Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances, J. Radioanal. Nucl. Chem. 308 (2016) 877-886, https://doi.org/10.1007/s10967-015-4513-7. 
  15. J. Zheng, D. Luo, Y. Qiao, L. Wang, W. Wu, C. Zhang, Y. Ye, Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid, Radiochim. Acta 105 (2017) 33-41, https://doi.org/10.1515/ract-2016-2654. 
  16. Q. Zuo, X. Gao, J. Yang, P. Zhang, G. Chen, Y. Li, K. Shi, W. Wu, Investigation on the thermal activation of montmorillonite and its application for the removal of U (VI) in aqueous solution, Journal of Taiwan Institute of Chemical Engineering 80 (2017) 754-760, https://doi.org/10.1016/j.jtice.2017.09.016. 
  17. T. Philipp, S.S.A. Azzam, A. Rossberg, N. Huittinen, K. Schmeide, T. Stumpf, U(VI) sorption on Ca-bentonite at (hyper)alkaline conditions - spectroscopic investigations of retention mechanisms, Sci. Total Environ. 676 (2019) 469-481, https://doi.org/10.1016/j.scitotenv.2019.04.274. 
  18. K. Brix, S. Baur, A. Haben, R. Kautenburger, Building the bridge between U(VI) and Ca-bentonite - Influence of concentration, ionic strength, pH, clay composition and competing ions, Chemosphere 285 (2021) 131445, https://doi.org/10.1016/j.chemosphere.2021.131445. 
  19. M. Stockmann, K. Fritsch, F. Bok, M. Marques Fernandes, B. Baeyens, R. Steudtner, K. Muller, C. Nebelung, V. Brendler, T. Stumpf, K. Schmeide, New insights into U (VI) sorption onto montmorillonite from batch sorption and spectroscopic studies at increased ionic strength, Sci. Total Environ. 806 (2022) 150653, https://doi.org/10.1016/j.scitotenv.2021.150653. 
  20. M.H. Bradbury, B. Baeyens, Sorption modelling on illite. Part II: Actinide sorption and linear free energy relationships, Geochem. Cosmochim. Acta 73 (2009) 1004-1013, https://doi.org/10.1016/j.gca.2008.11.016. 
  21. M. Marques Fernandes, N. Ver, B. Baeyens, Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite, Appl. Geochem. 59 (2015) 189-199, https://doi.org/10.1016/j.apgeochem.2015.05.006. 
  22. M.H. Bradbury, B. Baeyens, Experimental and Modelling Investigations on NaIllite: Acid-Base Behaviour and the Sorption of Strontium, Nickel, Europium and Uranyl, PSI Bericht Nr. 05-02. Paul Scherrer Institut, Villigen and NTB 04-02, Nagra, Wettingen, Switzerland, 2005. 
  23. Y. Gao, Z. Shao, Z. Xiao, U(VI) sorption on illite: effect of pH, ionic strength, humic acid and temperature, J. Radioanal. Nucl. Chem. 303 (2015) 867-876, https://doi.org/10.1007/s10967-014-3385-6. 
  24. R. Liao, Z. Shi, Y. Chen, J. Zhang, X. Wang, Y. Hou, K. Zhang, Characteristics of uranium sorption on illite in a ternary system: effect of phosphate on adsorption, J. Radioanal. Nucl. Chem. 323 (2020) 159-168, https://doi.org/10.1007/s10967-019-06878-y. 
  25. G. Montavon, S. Ribet, Y. Hassan Loni, F. Maia, C. Bailly, K. David, C. Lerouge, B. Mad'e, J.C. Robinet, B. Grambow, Uranium retention in a Callovo-Oxfordian clay rock formation: from laboratory-based models to in natura conditions, Chemosphere 299 (2022) 134307, https://doi.org/10.1016/j.chemosphere.2022.134307. 
  26. H. Mei, N. Aoyagi, T. Saito, N. Kozai, Y. Sugiura, Y. Tachi, Uranium (VI) sorption on illite under varying carbonate concentrations: batch experiments, modeling, and cryogenic time-resolved laser fluorescence spectroscopy study, Applied Geochemisty 136 (2022) 105178, https://doi.org/10.1016/j.apgeochem.2021.105178. 
  27. F. Zhang, J.C. Parker, S.C. Brooks, Y.-J. Kim, G. Tang, P.M. Jardine, D.B. Watson, Comparison of approaches to calibrate a surface complexation model for U(VI) Sorption to Weathered Saprolite, Transport Porous Media 78 (2009) 185-197, https://doi.org/10.1007/s11242-008-9294-9. 
  28. S. Ortaboy, G. Atun, Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution, Ann. Nucl. Energy 73 (2014) 345-354, https://doi.org/10.1016/j.anucene.2014.07.003. 
  29. Y.-J. Kim, S.C. Brooks, F. Zhang, J.C. Parker, J.-W. Moon, Y. Roh, Fate and transport of uranium(VI) in weathered saprolite, J. Environ. Radioact. 139 (2015) 154-162, https://doi.org/10.1016/j.jenvrad.2014.10.008, 2015. 
  30. R. Zuo, L. Wang, R. Shi, J. Yang, J. Wang, Y. Teng, Factors influencing the sorption and migration behavior of uranium in shale, J. Radioanal. Nucl. Chem. 314 (2017) 887-896, https://doi.org/10.1007/s10967-017-5448-y. 
  31. A. Walker, J. Racette, T. Saito, T. Yang, S. Nagasaki, Sorption of Se(-II) on illite, MX-80 bentonite, shale, and limestone in Na-Ca-Cl solution, Nucl. Eng. Technol. 54 (2022) 1616-1622, https://doi.org/10.1016/j.net.2021.10.039. 
  32. M. Altmaier, V. Metz, V. Neck, R. Muller, T. Fanghanel, Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl.4H2O(cr) in the system mg-na-H-OH-Cl-H2O at 25℃, Geochem. Cosmochim. Acta 67 (2003) 3595-3601, https://doi.org/10.1016/S0016-7037(03)00165-0. 
  33. M. Altmaier, V. Neck, T. Fanghanel, Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca-M(IV)-OH complexes, Radiochim. Acta 96 (2008) 541-550, https://doi.org/10.1524/ract.2008.1535. 
  34. S. Nagasaki, J. Riddoch, T. Saito, J. Goguen, A. Walker, T.T. Yang, Sorption behaviour of Np(IV) on illite, shale and MX-80 in high ionic strength solutions, J. Radioanal. Nucl. Chem. 313 (2017) 1-11, https://doi.org/10.1007/s10967-015-4332-x. 
  35. D.L. Parkhurst, C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3 - a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, 2013. Book 6, Chap. A43. 
  36. Japan Atomic Energy Agency, Thermodynamic DataBase. https://migrationdb.jaea .go.jp/english.html, April 27, 2021. (Accessed 9 December 2023). 
  37. Y. Sugiura, T. Ishidera, Y. Tachi, Surface complexation of Ca and competitive sorption of divalent cations on montmorillonite under alkaline conditions, Appl. Clay Sci. 200 (2021) 105910, https://doi.org/10.1016/j.clay.2020.105910. 
  38. M.H. Bradbury, B. Baeyens, A mechanistic description of Ni and Zn sorption on Namontmorillonite Part II: modelling, Journal of Conatminant Hydrology 27 (1997) 223-248. https://doi-org.libaccess.lib.mcmaster.ca/10.1016/S0169-7722(97)00007-7. 
  39. L. Ciavatta, The specific interaction theory in the evaluating ionic equilibria, Annali di Chimica (Rome) 70 (1980) 551-567. 
  40. Intera Engineering Ltd, OPG's Deep Geologic Repository for Low & Intermediate Level Waste, Technical Report, Nuclear Waste Management Organization, Toronto, Canada, 2011. NWMO DGR-TR-2011-24.