DOI QR코드

DOI QR Code

Rare earth elements as tracers: A study on post-wildfire effects in soil by neutron activation analysis

  • Received : 2024.04.16
  • Accepted : 2024.06.18
  • Published : 2024.11.25

Abstract

This study investigated using rare earth elements as tracers to study wildfire impacts. The study area was Antalya, located in the Mediterranean region of Türkiye. This region is known for the frequent occurrence of wildfires, which cause significant damage to the flora and fauna of the area. A series of wildfires occurred in the region in 2016. Soil samples were collected from the affected areas to understand these wildfires' impact better. Instrumental neutron activation analysis was used to analyze the samples. The study found that the north-facing aspect had higher concentrations of rare earth elements. This could be because north-facing aspects are cooler and more humid, with less erosion, leading to better ecological restoration and less transportation of rare earth elements.

Keywords

Acknowledgement

This work was part of the projects supported by the Istanbul Technical University Scientific Research Projects Coordination Unit (BAP) (TGA-2019-41755) and the Joint Institute for Nuclear Research (proposal: 2020-10-20-08-24-11). The authors would like to thank Prof. Dr. Tolga Gorum for his valuable advice, project administration, and funding acquisition. We would also like to thank Dr. Semih Sami Akay for data analysis and Abdussamet Yilmaz for his assistance in the fieldwork.

References

  1. United Nations Environment Programme, GRID-Arendal, Spreading like wildfire: the rising Threat of Extraordinary landscape fires - a rapid response assessment, 2022. https://wedocs.unep.org/xmlui/handle/20.500.11822/38372. (Accessed 22 March 2024). 
  2. J. San-Miguel-Ayanz, T. Durrant, R. Boca, P. Maianti, G. Liberta, D. Oom, A. Branco, D. De Rigo, D. Ferrari, E. Roglia, N. Scionti, Advance report on forest fires in Europe, Middle East and north africa 2022. https://publications.jrc.ec.europa.eu/repository/handle/JRC133215, 2023. (Accessed 28 March 2024). 
  3. N.G. Connelly, T. Damhus, R.M. Hartshorn, A.T. Hutton (Eds.), Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, RSC Publishing, 2005. 
  4. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geosci. Front. 10 (2019) 1285-1303, https://doi.org/10.1016/j.gsf.2018.12.005. 
  5. A. Kabata-Pendias, Trace Elements in Soils and Plants, fourth ed., CRC Press, 2011 https://doi.org/10.1017/CBO9781107415324.004. 
  6. A. Kabata-Pendias, A.B. Mukherjee, Trace Elements from Soil to Human, Springer Berlin, Heidelberg, 2022, https://doi.org/10.1007/978-3-540-32714-1. 
  7. R.C. Borges, D.I.T. Favaro, V.G. Caldas, D. da Costa Lauria, A.V.B. Bernedo, Instrumental neutron activation analysis, gamma spectrometry and geographic information system techniques in the determination and mapping of rare earth element in phosphogypsum stacks, Environ. Earth Sci. 75 (2016), https://doi.org/10.1007/s12665-016-5468-x. 
  8. K. Kumar, E. Saion, M.K. Halimah, C.K. Yap, M.S. Hamzah, Rare earth element (REE) in surface mangrove sediment by instrumental neutron activation analysis, J. Radioanal. Nucl. Chem. 301 (2014) 667-676, https://doi.org/10.1007/s10967-014-3221-z. 
  9. A. Akinlua, F.S. Olise, A.O. Akomolafe, R.I. McCrindle, Rare earth element geochemistry of petroleum source rocks from northwestern Niger Delta, Mar. Petrol. Geol. 77 (2016) 409-417, https://doi.org/10.1016/j.marpetgeo.2016.06.023. 
  10. A.C. Patra, P. Lenka, S.K. Sahoo, S.K. Jha, M.S. Kulkarni, Probing rare earth element distributions in soils of the mineralized Singhbhum region in India using INAA, Appl. Radiat. Isot. 166 (2020), https://doi.org/10.1016/j.apradiso.2020.109360. 
  11. P.J. Adeti, G. Amoako, J.B. Tandoh, O. Gyampo, H. Ahiamadjie, A.S.K. Amable, C. Kansaana, R.A.T. Annan, A. Bamford, Rare-earth element comparative analysis in chosen geological samples using nuclear-related analytical techniques, Nucl. Instrum. Methods Phys. Res. B 540 (2023) 122-128, https://doi.org/10.1016/j.nimb.2023.04.001. 
  12. B. Jones, S. Booker, Temporal variations in Rare Earth Element distributions in the Cenozoic succession and modern sediments of the Cayman Islands, Sediment. Geol. 456 (2023), https://doi.org/10.1016/j.sedgeo.2023.106485. 
  13. S.C. Lohr, C. Spandler, A. Baldermann, Controls on rapid rare earth element enrichment in sediments deposited by a continental-scale river system, Geochem. Cosmochim. Acta 366 (2024) 48-64, https://doi.org/10.1016/j.gca.2023.12.012. 
  14. R.R. Greenberg, P. Bode, E.A.D.N. Fernandes, Neutron activation analysis: a primary method of measurement, Spectrochim. Acta Part B At. Spectrosc. 66 (2011) 193-241, https://doi.org/10.1016/j.sab.2010.12.011. 
  15. J. Abraham, K. Dowling, S. Florentine, The unquantified risk of post-fire metal concentration in soil: a review, Water Air Soil Pollut. 228 (2017), https://doi.org/10.1007/s11270-017-3338-0. 
  16. A.N. Esen, N. Yushin, D. Grozdov, C. Yildiz, I. Zinicovscaia, S. Haciyakupoglu, S. Erenturk, T. Gorum, Effect of wildfire on soil element concentrations in Mediterranean Turkiye, J. Radioanal. Nucl. Chem. 332 (2023) 4667-4676, https://doi.org/10.1007/s10967-023-08894-5. 
  17. D.E. Alexakis, Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk, Land 9 (2020) 1-16, https://doi.org/10.3390/land9110409. 
  18. I. Campos, N. Abrantes, J.J. Keizer, C. Vale, P. Pereira, Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire, Sci. Total Environ. 572 (2016) 1363-1376, https://doi.org/10.1016/j.scitotenv.2016.01.190. 
  19. I. Hrelja, I. Sestak, D. Delac, P. Pereira, I. Bogunovic, Soil chemical properties and trace elements after wildfire in mediterranean Croatia: effect of severity, vegetation type and time-since-fire, Agronomy 12 (2022), https://doi.org/10.3390/agronomy12071515. 
  20. P. Pereira, A. Cerda, D. Martin, X. Ubeda, D. Depellegrin, A. Novara, J.F. MartinezMurillo, E.C. Brevik, O. Menshov, J.R. Comino, J. Miesel, Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania, Sci. Total Environ. 578 (2017) 469-475, https://doi.org/10.1016/j.scitotenv.2016.10.210. 
  21. V. Popovych, A. Gapalo, Monitoring of ground forest fire impact on heavy metals content in edafic horizons, Journal of Ecological Engineering 22 (2021) 96-103, https://doi.org/10.12911/22998993/135872. 
  22. C.M. Villarruel, L.A. Figueroa, J.F. Ranville, Quantification of bioaccessible and environmentally relevant trace metals in structure ash from a wildland-urban interface fire, Environ. Sci. Technol. 58 (2024) 2502-2513, https://doi.org/10.1021/acs.est.3c08446. 
  23. G. Pope, J. Callanan, J. Darley, M. Flood, J. Wear, B. Calderon, M. Gorring, X. Li, The fate of rare earth elements in post-fire soils in the Pocono Mountains, Pennsylvania (USA), in: EGU General Assembly, 2021, 2021, https://doi.org/10.5194/egusphere-egu21-13604. 
  24. Copernicus Data Space Ecosystem, (n.d.). https://dataspace.copernicus.eu/(accessed March 28, 2024). 
  25. D.C. Lutes, R.E. Keane, J.F. Caratti, C.H. Key, N.C. Benson, S. Sutherland, L. J. Gangi, FIREMON: fire effects monitoring and inventory system. https://doi.org/10.2737/rmrs-gtr-164, 2006. 
  26. S. Huang, L. Tang, J.P. Hupy, Y. Wang, G. Shao, A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. Res. 32 (2021), https://doi.org/10.1007/s11676-020-01155-1. 
  27. C.L. Meneses-Tovar, NDVI as indicator of degradation, Unasylva 62 (2011). 
  28. S.S. Pavlov, A.Y. Dmitriev, M.V. Frontasyeva, Automation system for neutron activation analysis at the reactor IBR-2, frank laboratory of neutron Physics, Joint Institute for nuclear research, Dubna, Russia, J. Radioanal. Nucl. Chem. 309 (2016) 27-38, https://doi.org/10.1007/s10967-016-4864-8. 
  29. C.N. Lange, A.M.G. Figueiredo, J. Enzweiler, L. Castro, Trace elements status in the terrain of an impounded vehicle scrapyard, J. Radioanal. Nucl. Chem. 311 (2017) 1323-1332, https://doi.org/10.1007/s10967-016-5078-9. 
  30. S. Strbac, D. Randelovic, G. Gajica, E. Hukic, S. Stojadinovic, G. Veselinovic, J. Orlic, R. Tognetti, M. Kasanin-Grubin, Spatial distribution and source identification of heavy metals in European mountain beech forests soils, Chemosphere 309 (2022), https://doi.org/10.1016/j.chemosphere.2022.136662. 
  31. M. Barbieri, The importance of enrichment factor (EF) and geoaccumulation index (igeo) to evaluate the soil contamination, J. Geol. Geophys. 5 (2016) 1-4, https://doi.org/10.4172/2381-8719.1000237. 
  32. C.L. McLeod, B.J. Shaulis, Rare earth elements in planetary crusts: insights from chemically evolved igneous suites on earth and the moon, Minerals 8 (2018), https://doi.org/10.3390/min8100455. 
  33. R. Salminen, M.J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, V. Gregorauskiene, J. Halamic, P. Heitzmann, Geochemical Atlas of Europe Part 2: Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications, Geological Survey of Finland, 2006. 
  34. J.G. Pausas, E. Carbo, R.N. Caturla, J.M. Gil, R. Vallejo, Post-Fire Regeneration Patterns in the Eastern Iberian Peninsula, 1999. 
  35. L. Wittenberg, D. Malkinson, O. Beeri, A. Halutzy, N. Tesler, Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel, Catena 71 (2007) 76-83, https://doi.org/10.1016/j.catena.2006.10.007. 
  36. G.P. Petropoulos, H.M. Griffiths, D.P. Kalivas, Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS, Appl. Geogr. 50 (2014) 120-131, https://doi.org/10.1016/j.apgeog.2014.02.006. 
  37. J.A. Galhardi, K. Luko-Sulato, L.N.M. Yabuki, L.M. Santos, J.A.B. Da Silva, Y.J.A. B. Da Silva, Rare earth elements and radionuclides. https://doi.org/10.1016/B978-0-12-822850-0.00011-9, 2022. 
  38. M. Hoshino, K. Sanematsu, Y. Watanabe, REE mineralogy and Resources, Handb. Phys. Chem. Rare Earths 49 (2016) 129-291, https://doi.org/10.1016/BS.HPCRE.2016.03.006.